Question

Verify that if the tangent to a plane curve γ at the point $\gamma(s)$ makes an angle $\psi(s)$ with the x-axis (turning from the positive x-direction to the tangent vector) then $\kappa(s)=\frac{d \psi}{d s}(s)$ (where $s=\operatorname{arclength}$ as usual). Suppose $y^{\prime}(s) \neq 0$ and let the tangent line at $\gamma(s)$ meet the x-axis at $x=c(s)$, say. Show that if $y(s) \neq 0$ (so the point $\gamma(s)$ is not on the x-axis itself) then $\kappa(s)=0$ if and only if $c^{\prime}(s)=0$.
Answer
Very easy: we see that

$$
\begin{aligned}
T(s) & =(\cos \phi, \sin \phi) \\
\Rightarrow T^{\prime}(s) & =(-\sin \phi, \cos \phi) \\
\text { But } N(s) & =(-\sin \phi, \cos \phi) \\
\Rightarrow K(s) & =\frac{d \phi}{d s} .
\end{aligned}
$$

$\gamma(s)=(x(s), y(s))$, unit speed.
Equation of tangent to curve γ at $(x(s), y(s))$ is

$$
(y-y(s)) x^{\prime}(s)=(x-x(s)) y^{\prime}(s) .
$$

This meets the x-axis at $(c(s), 0)$ so we have

$$
\begin{equation*}
-y(s) x^{\prime}(s)=(c(s)-x(s)) y^{\prime}(s) \tag{1}
\end{equation*}
$$

Differentiate: $-y^{\prime} x^{\prime}=y x^{\prime \prime}=\left(c^{\prime}-x^{\prime}\right) y^{\prime}+(c-x) y^{\prime \prime},($ dropping the $s)$.
Giving:

$$
-y x^{\prime \prime}=c^{\prime} y^{\prime}+(c-x) y^{\prime \prime}
$$

Substitute $(c-x)$ from (1) to get (with $y^{\prime} \neq 0$)

$$
-y x^{\prime \prime}=c^{\prime} y^{\prime}+\frac{-y x^{\prime}}{y^{\prime}} \cdot y^{\prime \prime}
$$

i.e. $c^{\prime}\left(y^{\prime}\right)^{2}=y\left(x^{\prime} y^{\prime \prime}-y^{\prime} x^{\prime \prime}\right)=y K$
as $x^{\prime}(s)^{2}+y^{\prime}(s)^{2}=1$
Hence since $y \neq 0$ we see $K=0$ precisely when $c^{\prime}=0$.

