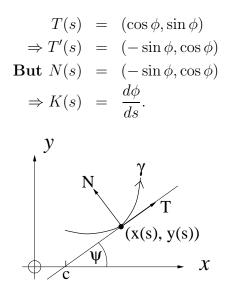
Question

Verify that if the tangent to a plane curve γ at the point $\gamma(s)$ makes an angle $\psi(s)$ with the x-axis (turning from the positive x-direction to the tangent vector) then $\kappa(s) = \frac{d\psi}{ds}(s)$ (where s = arclength as usual). Suppose $y'(s) \neq 0$ and let the tangent line at $\gamma(s)$ meet the x-axis at x = c(s), say. Show that if $y(s) \neq 0$ (so the point $\gamma(s)$ is not on the x-axis itself) then $\kappa(s) = 0$ if and only if c'(s) = 0. Answer

Very easy: we see that



 $\gamma(s) = (x(s), y(s))$, unit speed. Equation of tangent to curve γ at (x(s), y(s)) is

$$(y - y(s))x'(s) = (x - x(s))y'(s).$$

This meets the x-axis at (c(s), 0) so we have

$$-y(s)x'(s) = (c(s) - x(s))y'(s). \quad \longleftarrow (1)$$

Differentiate: -y'x' = yx'' = (c' - x')y' + (c - x)y'', (dropping the s). Giving:

$$-yx'' = c'y' + (c - x)y''$$

Substitute (c - x) from (1) to get (with $y' \neq 0$)

$$-yx'' = c'y' + \frac{-yx'}{y'}.y''$$

i.e. $c'(y')^2 = y(x'y'' - y'x'') = yK$
as $x'(s)^2 + y'(s)^2 = 1$

Hence since $y \neq 0$ we see K = 0 precisely when c' = 0.