Question

Let X_1, \ldots, X_n be a random sample of size n from the distribution having pdf

$$f(x|\theta) = \frac{1}{\theta} \exp\left(-\frac{x}{\theta}\right), \quad \theta > 0.$$

Let $Y_1 = \min(X_1, \dots, X_n)$ and $Y_n = \max(X_1, \dots, X_n)$. Find the probability density functions of Y_1 and Y_n . Find $E(Y_1)$. Find $P(Y_n \le 4)$ when n = 5.

Answer

We have
$$f(x|\theta) = \frac{1}{\theta}e^{-\frac{x}{\theta}}, \quad 0 < x < \infty$$

Therefore $F(x) = \int_0^x \frac{1}{\theta}e^{-\frac{u}{\theta}} du = 1 - e^{-\frac{x}{\theta}}, \quad 0 < x < \infty$
[using: $\int e^{mu} du = \frac{e^{mu}}{m} + const$]
pdf of Y_1 is

$$g(y_1) = n\{1 - F(y_1)\}^{n-1} f(y_1), \quad 0 < y_1 < \infty$$

$$= n\left\{1 - e^{-\frac{y_1}{\theta}}\right\}^{n-1} \frac{1}{\theta} e^{-\frac{y_1}{\theta}}, \quad 0 < y_1 < \infty$$

$$= \frac{n}{\theta} e^{-\frac{(n-1)y_1}{\theta}} \cdot e^{-\frac{y_1}{\theta}}, \quad 0 < y_1 < \infty$$

$$= \frac{n}{\theta} e^{-\frac{n}{\theta}y_1}, \quad 0 < y_1 < \infty$$

We see that $Y_1 \sim \text{Exponential with } \beta = \frac{\theta}{n}$ [Table of common distributions] Therefore $E(Y_1) = \beta = \frac{\theta}{n}$ pdf of Y_n is

$$h(y_n) = n\{F(y_n\}^{n-1}f(y_n)$$

$$= n\left\{1 - e^{-\frac{y_n}{\theta}}\right\} \frac{1}{\theta}e^{-\frac{y_n}{\theta}}$$

$$= \frac{n}{\theta}e^{-\frac{y_n}{\theta}}\left(1 - e^{-\frac{y_n}{\theta}}\right)^{n-1}, \quad 0 < y_n < \infty$$

$$P(Y_n \le y_n) = \{F(y_n)\}^n$$

Therefore $P(Y_n \le 4) = \{F(4)\}^n = \left(1 - e^{-\frac{4}{\theta}}\right)^n$ for any n
Therefore Answer $= \left(1 - e^{-\frac{4}{\theta}}\right)^5$ when $n = 5$