Question

Let $Y_{1}=\min \left(X_{1}, \ldots, X_{n}\right)$ where X_{1}, \ldots, X_{n} is a random sample of size n from the distribution with pdf

$$
f(x \mid \theta)=\frac{1}{\theta} \exp [-(x-\theta)], \quad x>\theta
$$

Show that $2 n\left(Y_{1}-\theta\right)$ has the χ^{2} distribution with 2 degrees of freedom.

Answer

We have $f(x \mid \theta)=e^{-(x-\theta)}, \quad x>\theta$
Therefore

$$
\begin{aligned}
F(x) & =\int_{\theta}^{x} e^{-(u-\theta)} d u \\
& =\int_{0}^{x-\theta} e^{-z} d z, \quad z=u-\theta \\
& =1-e^{-(x-\theta)}, \quad x>\theta
\end{aligned}
$$

$$
\begin{aligned}
\text { pdf of } Y_{1} & =g\left(y_{1}\right) \\
& =n\left\{1-F\left(y_{1}\right)\right\}^{n-1} f\left(y_{1}\right) \\
& =n\left\{e^{-\left(y_{1}-\theta\right)}\right\}^{n-1} e^{-\left(y_{1}-\theta\right)}, \quad y_{1}>\theta \\
& =n e^{-n\left(y_{1}-\theta\right)}, \quad y_{1}>\theta
\end{aligned}
$$

Let $z=2 n\left(Y_{1}-\theta\right) \Rightarrow Y_{1}=\frac{Z}{2 n}+\theta, \quad Z>0$
Therefore $\frac{d y_{1}}{d z}=\frac{1}{2 n}$. Therefore $\left|\frac{d y_{1}}{d z}\right|=\frac{1}{2 n}$
Therefore pdf of Z is $h(z)=n e^{-\frac{z}{2}} \cdot \frac{1}{2 n}=\frac{1}{2} e^{-\frac{z}{2}}, \quad z>0$
This is the pdf of χ^{2} with 2 degrees of freedom.

