QUESTION The number of cars passing along a road in 3 different five minute periods are recorded as n_{1}, n_{2} and n_{5}. They may be assumed to be independent observations from Poisson distributions with means $\mu, \lambda \mu$ and $\lambda^{2} \mu$ respectively. Show that the maximum likelihood estimates $\hat{\lambda}$ and $\hat{\mu}$ satisfy:

$$
\begin{aligned}
\hat{\mu}+\hat{\lambda} \hat{\mu}+(\hat{\lambda})^{2} \hat{\mu} & =n_{1}+n-2+n_{3} \\
\hat{\lambda} \hat{\mu}+2(\hat{\lambda})^{2} \hat{\mu} & =n_{2}+2 n_{3}
\end{aligned}
$$

Find $\hat{\lambda}$ and $\hat{\mu}$ when $n_{1}=30, n_{2}=40$ and $n_{3}=50$.
ANSWER $L(\lambda, \mu)=\frac{e^{-\mu} \mu^{n_{1}}}{n_{1}!} \frac{e^{-\lambda \mu}(\lambda \mu)^{n_{2}}}{n_{2}!} \frac{e^{-\lambda^{2} \mu}\left(\lambda^{2} \mu\right)^{n_{3}}}{n_{3}!}$
$\ln L(\lambda, \mu)=k-\left(\mu+\lambda \mu+\lambda^{2} \mu\right)+\left(n_{1}+n_{2}+n_{3}\right) \ln \mu+\left(n_{2}+2 n_{3}\right) \ln \lambda$ $\frac{\partial \ln L(\lambda, \mu)}{\partial \lambda}=-\mu-2 \lambda \mu+\frac{n_{2}+2 n_{3}}{\lambda}$
$\frac{\partial \ln L(\lambda, \mu)}{\partial \mu}=-1-\lambda-\lambda^{2}+\frac{n_{1}+n_{2}+n_{3}}{\mu}$
hence mle's satisfy $\hat{\lambda} \hat{\mu}+2 \hat{\lambda}^{2} \hat{\mu}=n_{2}+2 n_{3}$
$\hat{\mu}+\hat{\lambda} \hat{\mu}+\hat{\lambda}^{2} \hat{\mu}=n_{1}+n_{2}+n_{3}$

