QUESTION A random sample of size n is taken without replacement from a very large sample of components and r of the sample are found to be defective. Write down an approximate 99% confidence interval for the proportion of the population which are defective stating clearly three reasons who your interval is only approximate.

If $n=400$ show that the length of the longest such interval is about 0.13.
ANSWER 99% CI approximately $\frac{r}{n} \pm 2.58 \sqrt{\frac{\frac{r}{n}\left(1-\frac{r}{n}\right)}{n}}$
The distribution is really Hypergeometric but the batch is very large so the approximate distribution is Binomial n,p, n large hence we can use the normal to approximate. Variance $=p \frac{q}{n}$ but we use $\frac{r}{n}$ for p as an approximation. $\mathrm{n}=400$, Length of interval $2 \times 2.58 \sqrt{\frac{\frac{r}{n}\left(1-\frac{r}{n}\right)}{n}}$. $\left(\mathrm{p}(1-\mathrm{p})\right.$ is maximum when $\left.\mathrm{p}=\frac{1}{2}\right)$ Hence maximum length $2 \times 2.58 \sqrt{\frac{\frac{1}{2} \frac{1}{2}}{400}}=\frac{2.58}{20} \approx 0.13$.

