QUESTION Eight golfers play a round of golf on two consecutive Saturdays. On the first Saturday they returned scores of $72,89,69,70,85,71,96,86$ and on the second Saturday in the same order $72,80,71,70,82,72,90,84$.
(a) Assuming that the differences in their scores are drawn from a normal population, is there significant evidence that their golf has improved?
(b) Carry out the appropriate test of the scores for the second Saturday had been given to you in a different and unknown order.

ANSWER

$$
\begin{array}{ccccccccccc}
72 & 82 & 69 & 70 & 85 & 71 & 96 & 86 \\
72 & 80 & 71 & 70 & 82 & 72 & 90 & 84
\end{array} H_{0}: \mu_{1}=\mu_{2} \quad H_{1}: \mu_{1}>\mu_{2} \quad \alpha=5 \%
$$

(a) assuming paired sample data

$$
\text { d } \begin{array}{rrrrrrrrrr}
0 & 2 & -2 & 0 & 3 & -1 & 6 & 2 & H_{0}: \mu_{d}=0 & H_{1}: \mu_{d} \neq 0
\end{array}
$$

Test 4a, Paired sample, two means. $z=\frac{\bar{d}-0}{\frac{d}{d}} \sim t_{n}$

$$
\bar{d}=1.25 \quad s_{d}=2.5495 \quad n=8
$$

$z=\frac{1.25}{\frac{2.5955}{\sqrt{8}}}=1.39$
is not significant.
Hence accept H_{0}.

(b) Assuming independent data

$$
\begin{aligned}
\bar{x}_{1} & =78.875 \\
s_{1} & =9.8334 \\
\text { overlinex } & =77.625 \\
s_{2} & =7.4054 \\
n_{1} & =n_{2}=8
\end{aligned}
$$

Test 4, assume normal distribution, variances equal.

$$
\begin{gathered}
z=\frac{\bar{x}_{1}-\bar{x}_{2}}{\sqrt{\left\{s^{2}\left(\frac{1}{n_{1}}+\frac{1}{n_{2}}\right)\right\}}} \\
s^{2}=\frac{\left(n_{1}-1\right) s_{1}^{2}+\left(n_{2}-1\right) s_{2}^{2}}{n_{1}+n_{2}-2} \sim t n_{1}+n_{2}-2
\end{gathered}
$$

$$
\begin{aligned}
s & =8.7045 \\
z & =\frac{1.25}{8.7045 \sqrt{\frac{1}{8}+\frac{1}{8}}}=0.29
\end{aligned}
$$

Clearly not significant as t_{14} hence accept H_{0}. Test in (b) much less sensitive.

