QUESTION

Evaluate (the complex integral) $\int_1^2 z^k dz$, where k > -1 is an integer. Explain why it makes sense to evaluate such an integral. What happens if k = -1? What happens if k < -1?

ANSWER

It makes sense to evaluate $\int_1^2 z^k dz$ as long as the integral is independent of the path. This is the case if $\int_{\gamma} z^k dz = 0$ around any closed path γ . This is true if z^k has an antiderivative which is the case if $k \neq -1$. (If k = -1 then we are not allowed to use Logz as an antiderivative as Log is not analytic in a neighbourhood of 0.) If $k \neq -1$ then $\int_1^2 z^k dz = \frac{1}{k+1} [z^{k+1}]_1^2 = \frac{2^{k+1}-1}{k+1}$.