Question

For larger distances from the earth the gravitational potential is more accurately represented by $-m M G /(x+R)$ where G is constant, M is the mass of the earth, m is the mass of the particle, x is the distance from the surface of the earth and R is the earth's radius. Show that the force produced by this potential at the surface of the earth is the same as the gravitational force $-m g$ if the constants are such that $g=M G / R^{2}$ Write down the total energy of a rocket of constant mass m travelling vertically. Assuming the rocket blasts off from the earth surface (where $x=0$) with speed $v=V_{0}$ find the maximum height the rocket reaches. Determine the critical velocity that ensures the rocket never reaches a maximum height (this is the escape velocity).

Answer

Kinetic energy $=T=\frac{1}{2} m v^{2} \quad$ Potential energy $=V=-\frac{m H G}{x+R}$
Energy $=T+V=\frac{1}{2} v^{2}-\frac{m H G}{x+R}$
Force $=-\frac{d V}{d x}=-\frac{m H G}{(x+R)^{2}}$, near the earth's surface $x=c$
\Rightarrow Force $\approx-\frac{\mathrm{mHG}}{\mathrm{R}^{2}}$. Compare this with $-m g$, and show these are the same if $g=\frac{H G}{R^{2}}$.
because the force only depends on x, it is conservative
\Rightarrow energy remains constant.
Initially energy $=\frac{1}{2} m v_{0}^{2}-\frac{m H G}{R}$
$\Rightarrow \frac{1}{2} m v^{2}-\frac{m H G}{x+R}=\frac{1}{2} m v_{0}^{2}-\frac{m H G}{R}$ always
so $v^{2}=v_{0}^{2}-\frac{2 H G}{R}+\frac{2 H G}{x+R}$
The maximum height occurs when $v=0$
$\Rightarrow 0=v_{0}^{2}-\frac{2 H G}{R}+\frac{2 H G}{x+R}$
$\Rightarrow x=\frac{\frac{R^{2} v_{0}^{2}}{2 H G}}{1-\frac{R v_{0}^{2}}{2 H G}}$ is the maximum height.

Note:
for $1-\frac{R v_{0}^{2}}{2 H G}>0$ there is a maximum height that has $x>0$.
for $1-\frac{R v_{0}^{2}}{2 H G}<0$ there is no maximum height that has $x>0$.
$1-\frac{R v_{0}^{2}}{2 H G}<0 \Rightarrow 1<\frac{R v_{0}^{2}}{2 H G}$
$\Rightarrow v_{0}>\sqrt{\frac{2 H G}{R}}$
when $v_{0}=\sqrt{\frac{2 H G}{R}}$ this is the escape velocity.

