Question

State Rouche's theorem and use it to show that all the roots of the equation

$$
z^{5}+\alpha z^{2}+1=0
$$

where the constant α satisfies $|\alpha| \leq 7$, lie inside the circle $|z|=2$.
Assume that $\alpha=1+i b$ where $b>1$. Use the argument principle to show that just two of these roots lie in the first quadrant.

Answer

Rouche's Theorem
Let $f(z)=z^{5}$ and $g(z)=\alpha z^{2}+1$
For $|z|=2|f(z)|=32,|g(z)| \leq|\alpha||z|^{2}+1 \leq 7.4+1=29$ By Rouche's theorem f and $f+g$ have the same number of roots inside $|z|=2$ i.e. all the 5 roots of $f+g$ are in C.

Suppose $\alpha=1+i b \quad b>1$

DIAGRAM

The number of zeros $=\frac{1}{2 \pi}[\arg g(z)]_{C}$
On the real axis $f(x)=x^{5}+x^{2}+1+i b x^{2}$
$\tan \arg g(z)=\frac{b x^{2}}{x^{5}+x^{2}+1}$ this is continuous for $x \geq 0$, zero when $x=0$ and $\rightarrow 0$ as $x \rightarrow \infty$. So the change in $\arg g(z)$ along $O A$ is $<\epsilon_{1}$.
On the imaginary axis
$g(z)=(i y)^{5}+(i y)^{2}+1+i b(i y)^{2}=i y^{5}-i b y^{2}+y^{2}+1$
So $\tan \arg f(z)=\frac{y^{5}-b y^{2}}{y^{2}+1}$ this is continuous, zero at $y=0$ and $\rightarrow \infty$ as $y \rightarrow \infty$. So the change in $\arg g(z)$ along $B O$ is $-\frac{\pi}{2}+\epsilon_{2}$.
On the circle $C, z=R e^{i \theta}$
$g(z)=R^{5} e^{5 i \theta}\left(1+\frac{e^{-3 i \theta}}{R^{2}}+\frac{e^{-5 i \theta}}{R^{5}}+\frac{i b e^{-2 i \theta}}{R^{2}}\right)$
$\arg g(z)=5 \theta+\arg (1+w)$
w is small if R is large, so $\arg (1+w)$ varies little,
so $[\arg g(z)]_{\operatorname{arc} A B}=\frac{5 \pi}{2}+\epsilon_{3}$
So $\frac{1}{2 \pi}[\arg g(z)]=\frac{1}{2 \pi}\left[\frac{5 \pi}{2}-\frac{\pi}{2}+\epsilon\right]=2$ as it is an integer
So $g(z)$ has 2 roots in the first quadrant.

