Question

State Rouche's theorem and use it to show that all the roots of the equation

$$z^5 + \alpha z^2 + 1 = 0,$$

where the constant α satisfies $|\alpha| \leq 7$, lie inside the circle |z| = 2. Assume that $\alpha = 1 + ib$ where b > 1. Use the argument principle to show that just two of these roots lie in the first quadrant.

Answer

Rouche's Theorem

Let $f(z) = z^5$ and $g(z) = \alpha z^2 + 1$ For |z| = 2 |f(z)| = 32, $|g(z)| \le |\alpha||z|^2 + 1 \le 7.4 + 1 = 29$ By Rouche's theorem f and f + g have the same number of roots inside |z| = 2 i.e. all the 5 roots of f + g are in C.

Suppose $\alpha = 1 + ib \ b > 1$ DIAGRAM The number of zeros $=\frac{1}{2\pi}[\arg g(z)]_C$ On the real axis $f(x) = x^5 + x^2 + 1 + ibx^2$ $\tan \arg g(z) = \frac{bx^2}{x^5 + x^2 + 1}$ this is continuous for $x \ge 0$, zero when x = 0 and $\rightarrow 0$ as $x \to \infty$. So the change in $\arg g(z)$ along OA is $< \epsilon_1$. On the imaginary axis $g(z) = (iy)^5 + (iy)^2 + 1 + ib(iy)^2 = iy^5 - iby^2 + y^2 + 1$ So $\tan \arg f(z) = \frac{y^5 - by^2}{y^2 + 1}$ this is continuous, zero at y = 0 and $\rightarrow \infty$ as $y \to \infty$. So the change in $\arg g(z)$ along BO is $-\frac{\pi}{2} + \epsilon_2$. On the circle $C, z = Re^{i\theta}$ $g(z) = R^5 e^{5i\theta} \left(1 + \frac{e^{-3i\theta}}{R^2} + \frac{e^{-5i\theta}}{R^5} + \frac{ibe^{-2i\theta}}{R^2}\right)$ $\arg g(z) = 5\theta + \arg(1 + w)$ w is small if R is large, so $\arg(1 + w)$ varies little, so $[\arg g(z)]_{\text{arc } AB} = \frac{5\pi}{2} + \epsilon_3$ So $\frac{1}{2\pi}[\arg g(z)] = \frac{1}{2\pi} \left[\frac{5\pi}{2} - \frac{\pi}{2} + \epsilon\right] = 2$ as it is an integer So g(z) has 2 roots in the first quadrant.