Question

A Markov chain consists of a simple random walk taking place on a circle. The states consist of equally spaced points labelled $0,1,2, \cdots, a-1$ in a clockwise direction. At each step of the random walk transition takes place as follows:
(i) a clockwise step with probability p,
(ii) an anticlockwise step with probability q,
(iii) no change of position with probability $1-p-q$,
where $p q \neq 0$, and $p+q<1$.
Write down the transition matrix of the Markov chain.
Explain how the classification theorems enable you to deduce that in this case there is a long term equilibrium state occupancy distribution. Find this distribution. Find the mean recurrence time for any positive recurrent states.

Answer

PICTURE
The transition matrix is as follows

Now all the states intercommunicate, so they are of the same type (positive recurrent). Since $1-p-q \neq 0$ the states are all aperiodic. Thus we have a finite irreducible aperiodic distinction, which is also the equilibrium distribution.
Let $\boldsymbol{\pi}=\left(\pi_{0}, \pi_{1}, \ldots, \pi_{a-1}\right)$ denote the stationary distribution. If it satisfies $\boldsymbol{\pi}$ $=\pi \mathrm{P}$. Thus we have

$$
\begin{aligned}
\pi+0 & =(1-p-q) \pi_{0}+q \pi_{1}+p \pi_{a-1} \\
\pi_{k} & =p \pi_{k-1}+(1-p-q) \pi_{k}+q \pi_{k+1} \\
\pi_{a-1} & =q \pi_{0}+p \pi_{a-2}-(1-p-q) \pi_{a-1}
\end{aligned}
$$

Note Columns sum to 1 . Therefore $(1,1, \ldots, 1)$ is a fixed vector and therefore $\boldsymbol{\pi}=\left(\frac{1}{a}, \frac{1}{a}, \ldots, \frac{1}{a}\right)$

$$
\begin{align*}
p \pi_{a-1}+q \pi_{1}-(p+q) \pi_{0} & =0 \tag{1}\\
q \pi_{k+1}-(p+q) \pi_{k}+p \pi_{k-1} & =0 \tag{2}\\
q \pi_{0}+p \pi_{a-2}-(p-q) \pi_{a-1} & =0 \tag{3}
\end{align*}
$$

Solving (2) gives

$$
\begin{gathered}
\pi_{k}=A+b\left(\frac{p}{q}\right)^{k} \quad \text { if } p \neq q \\
\pi_{k}=A+B k \quad \text { if } p=q
\end{gathered}
$$

Case $1 p \neq q$. From (1) we have

$$
\begin{align*}
p\left(A+B\left(\frac{p}{q}\right)^{a-1}\right)+q\left(A+B\left(\frac{p}{q}\right)\right) & \\
-(p+q)\left(A+B\left(\frac{p}{q}\right)^{a-1}\right) & =0 \\
\text { i.e. } B\left[p\left(\frac{p}{q}\right)^{a-1}-q\right] & =0 \tag{4}
\end{align*}
$$

So either $\mathrm{B}=0$ or $\left[p\left(\frac{p}{q}\right)^{a-1}-q\right]=0$.
From (3)

$$
\begin{align*}
q(a+b)+p\left(A+b\left(\frac{p}{q}\right)^{a-2}\right)-(p+q)\left(a+b\left(\frac{p}{q}\right)^{a-1}\right) & =0 \\
B\left(\left\{p\left(\left(\frac{p}{q}\right)^{a-2}-\left(\frac{p}{q}\right)^{a-1}\right)\right\}-\left[p\left(\frac{p}{q}\right)^{a-1}-q\right]\right) & =0 \tag{5}
\end{align*}
$$

From (4) if [] $=0$, since $\} \neq 0$ in (5), we deduce $B=0$.
Thus $B=0$ and $\pi_{k}=A$
Case $2 p=q$
From(1) we have

$$
P(A+B(a-1))+q(A+B)-(p+q) A=0
$$

i.e. $B[p(a-1)+q]=0$. Now >0 so $\mathrm{B}=0$ and again $\pi_{k}=A$.

Now $\sum_{k=0}^{a-1} \pi_{k}=1$ so $A=\frac{1}{a}$ and so $\boldsymbol{\pi}=\left(\frac{1}{a}, \frac{1}{a}, \ldots, \frac{1}{a}\right)$
The mean recurrence times are the reciprocals of the equilibrium probabilities. i.e. all equal to a.

