Question

Describe what is meant by a Compound Poisson process.
Show that if $A(z)$ is the probability generating function for the number of events occurring at each point of the process, then the random variable $X(t)$ - the total number of events occurring in time t - has a probability generating function of the form

$$
G(z)=\exp (\lambda t A(z)-\lambda t)
$$

During the working day (8 a.m. to 6 p.m.) the Highfield Patent Medicine Co. receives telephone calls ordering various numbers of bottles of Dr. Hirst's Rejuvenating Elixir. The telephone calls arrive according to a Poisson process with rate λ calls per hour. The number N of bottles ordered by a telephone call has a geometric distribution, i.e.

$$
P(N=n)=p(1-p)^{n-1}, \quad n=1,2, \cdots
$$

Find the mean and variance of the number of bottles ordered per day.

Answer

Suppose that
(i) points occur in a Poisson process $\{N(t): t \geq 0\}$ with rate λ
(ii) at the ith point Y_{i} event occur, where Y_{1}, Y_{2}, \ldots are i.i.d. random variables's
(iii) Y_{i} and $\{N(t): t \geq 0\}$ are independent. The total number of events occurring in a time interval of length t i s

$$
X(t)=\sum_{i=1}^{N(t)} Y_{i}
$$

$\{N(t): t \geq 0\}$ is said to be a compound Poisson process.
Let the p.g.f. of each Y_{i} be $\mathrm{A}(\mathrm{z})$. Then $\mathrm{X}(\mathrm{t})$ has p.g.f.

$$
\begin{aligned}
\sum_{j=0}^{\infty} z^{j} P(X(t)=j) & =\sum_{j=0}^{\infty} \sum_{n=0}^{\infty} z^{j} P(X(t)=j \mid N(t)=n) P(N(t)=n) \\
& =\sum_{j=0}^{\infty} \sum_{n=0}^{\infty} z^{j} P\left(Y_{1}+Y_{2}+\ldots+Y_{n}=j\right) \frac{\lambda t^{n} e^{-\lambda t}}{n!}
\end{aligned}
$$

$$
\begin{aligned}
& =\sum_{n=0}^{\infty}\left\{\sum_{j=0}^{\infty} z^{j} P\left(Y_{1}+Y_{2}+\ldots+Y_{n}=j\right)\right\} \frac{\lambda t^{n} e^{-\lambda t}}{n!} \\
& =\sum_{n=0}^{\infty}[A(n)]^{n} \frac{(\lambda t)^{n} e^{-\lambda t}}{n!} \\
& \quad \text { since the } Y_{i} \text { are independent } \\
& =\exp (\lambda t A(z)-\lambda t) \\
& =G(z)
\end{aligned}
$$

For the geometric distribution

$$
\begin{aligned}
A(z) & =\sum_{n=1}^{a} \operatorname{inftyp}(1-p)^{n-1} z^{n} \\
& =p z \sum_{n=1}^{\infty}(1-p)^{n-1} z^{n-1} \\
& =\frac{p z}{1-(1-p) z}
\end{aligned}
$$

From 8a.m. to 6 p.m. there are 10 hours. So the p.g.f. for the number of bottles ordered are day is

$$
\begin{aligned}
G(z)= & \exp \left(\frac{10 \lambda p z}{1-(1-p) z}-10 \lambda\right) \\
G^{\prime}(z)= & \exp \left(\frac{10 \lambda p z}{1-(1-p) z}-10 \lambda\right) \\
& \cdot \frac{(1-(1-p) z)+z(1-p)}{(1-(1-p) z)^{2}} \cdot 10 \lambda p \\
= & \exp \left(\frac{10 \lambda p z}{1-(1-p) z}-10 \lambda\right) \cdot \frac{10 \lambda p}{(1-(1-p) z)^{2}} \\
G^{\prime \prime}(z)= & \exp \left(\frac{10 \lambda p z}{1-(1-p) z}-10 \lambda\right)\left[\frac{10 \lambda p}{(1-(1-p) z)^{2}}\right] \\
& +\exp \left(\frac{10 \lambda p z}{1-(1-p) z}-10 \lambda\right) \cdot \frac{2(1-p) \cdot 10 \lambda p}{(1-(1-p) z)^{3}} \\
G^{\prime}(1)= & \exp (0) \cdot \frac{10 \lambda p}{p^{2}} \\
E(X)= & \frac{10 \lambda}{p} \\
G^{\prime \prime}(1)= & \left(\frac{10 \lambda}{p}\right)^{2}+\frac{20 \lambda(1-p)}{p^{2}} \\
\operatorname{Var}(X)= & G^{\prime \prime}(1)+G^{\prime}(1)-G^{\prime}(1)^{2} \\
= & \frac{20 \lambda(1-p)}{p^{2}}+\frac{10 \lambda}{p} \\
= & \frac{20 \lambda}{p^{2}}-\frac{\lambda}{p} \\
= & \frac{10 \lambda}{p^{2}}(2-p)
\end{aligned}
$$

