Vector Calculus Grad, Div and Curl

Question

 \underline{F} is a 3-dimensional smooth vector field. $B_{a,b,c}$ is the surface of the box defined by

$$\begin{array}{lll} -a \leq & x & \leq a \\ -b \leq & y & \leq b \\ -c \leq & z & \leq c \end{array}$$

with outward normal $\underline{\hat{N}}$.

Show that

$$\lim_{a,b,c\to 0^+} \frac{1}{8abc} \oint_{B_{a,b,c}} \bullet \hat{\underline{N}} dS = \underline{\nabla} \bullet \underline{F}(0,0,0)$$

Answer

Use the Maclaurin expansion of F:

$$\underline{F} = \underline{F}_0 + \underline{F}_1 x + \underline{F}_2 y + \underline{F}_3 z + \cdots$$

with

$$\underline{F}_{0} = \underline{F}(0,0,0)
\underline{F}_{1} = \frac{\partial}{\partial x} \underline{F}(x,y,z) \Big|_{(0,0,0)} = \left(\frac{\partial F_{1}}{\partial x} \underline{i} + \frac{\partial F_{2}}{\partial x} \underline{j} + \frac{\partial F_{3}}{\partial x} \underline{k} \right) \Big|_{(0,0,0)}
\underline{F}_{2} = \frac{\partial}{\partial y} \underline{F}(x,y,z) \Big|_{(0,0,0)} = \left(\frac{\partial F_{1}}{\partial y} \underline{i} + \frac{\partial F_{2}}{\partial y} \underline{j} + \frac{\partial F_{3}}{\partial y} \underline{k} \right) \Big|_{(0,0,0)}
\underline{F}_{3} = \frac{\partial}{\partial z} \underline{F}(x,y,z) \Big|_{(0,0,0)} = \left(\frac{\partial F_{1}}{\partial z} \underline{i} + \frac{\partial F_{2}}{\partial z} \underline{j} + \frac{\partial F_{3}}{\partial z} \underline{k} \right) \Big|_{(0,0,0)}$$

 \cdots represents terms in x, y and z that are of degree two or above.

On the top of the box: z = c, $\hat{N} = \underline{k}$.

On the bottom of the box: z = -c, $\hat{N} = -\underline{k}$

On both of these: dS = dxdy

So

$$\left(\iint_{top} + \iint_{top}\right) \underline{F} \bullet \underline{\hat{N}} dS$$

$$= \int_{-a}^{a} dx \int_{-b}^{b} dy (c\underline{F}_{3} \bullet \underline{k} - c\underline{F} \bullet (-\underline{k} + \cdots)$$

$$= 8abc\underline{F}_{3} \bullet \underline{k} + \cdots + 8abc \frac{\partial}{\partial z} F_{3}(x, y, z) \Big|_{0,0,0} + \cdots$$

Here, \cdots represented terms in a, b and c that are of degree 4 or higher. Similar formulas can be used for the other two face pairs. Combining the three formulas gives

$$\iint_{B_{a,b,c}} \underline{F} \bullet \hat{N} dS = 8abc \operatorname{div} \underline{F}(0,0,0) + \cdots$$

So it can be seen that

$$\lim_{a,b,c\to 0^+} \frac{1}{8abc} \iint_{B_{a,\overline{b},c}} \underline{F} \bullet \underline{\hat{N}} dS = \operatorname{div} \underline{F}(0,0,0)$$