Vector Calculus
Grad, Div and Curl

Question
F is a 3-dimensional smooth vector field.
B, . is the surface of the box defined by

—a< z <a
-b< y <0
—c< z <c¢

with outward normal E )
Show that
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Answer
Use the Maclaurin expansion of F:

F=Fy+Fix+Foy+Fsz+---
with

F, = F(0,0,0)
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- represents terms in x, y and z that are of degree two or above.
On the top of the box: z = ¢, N = k.
On the bottom of the box: z = —¢, ﬁ = —k
On both of these: dS = dxdy
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Here, - - - represented terms in a, b and ¢ that are of degree 4 or higher.
Similar formulas can be used for the other two face pairs.
Combining the three formulas gives

}[j F e N dS = 8abedivF(0,0,0) + - -
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So it can be seen that
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