Vector Calculus
Grad, Div and Curl

Question
F' is a 2-dimensional smooth vector field.
C. is a circle of radius € centred at the origin.

N is the unit outward normal to C..
Show that
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Use the Maclaurin expansion of F|
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Here, - - - represent terms in z and y of degree 2 and higher.

On the curve C, of radius € centered at the origin, N = %(:EZ +yj).
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Here - - - represents terms in x and y of degree 3 or higher.
Since
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This gives
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Here - - - represents terms in e of degree 1 or higher.
So taking the limit as € — 0 gives
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