In what follows you may assume that the following notation applies

$$
y=y(x), y^{\prime}=\frac{d y}{d x}
$$

You may also assume that, unless otherwise stated, y is a sufficiently continuously differentiable function.

Question

Find the continuous curve $y=y(x)$ between the points $(-1,0)$ and $(1,0)$ for which

$$
I=\int_{-1}^{1} d x \sqrt{(1-y)} \sqrt{1+y^{\prime 2}}
$$

is stationary.

Answer

Since $F=\sqrt{1-y} \sqrt{1+y^{\prime 2}}$ is not a function of x, an integral of the E-L equation is:
$y^{\prime} \frac{\partial F}{\partial y^{\prime}}-F=$ const.
$\Rightarrow \frac{\partial F}{\partial y^{\prime}}=\frac{\sqrt{1-y}}{\sqrt{1+y^{\prime 2}}} \times \frac{2 y^{\prime}}{2}$
Thus $\frac{y^{\prime 2} \sqrt{1-y}}{\sqrt{1+y^{\prime 2}}}-\sqrt{1-y} \sqrt{1+y^{\prime 2}}=$ const
$\Rightarrow \sqrt{\frac{1-y}{1+y^{\prime 2}}}=$ const $=\alpha$ say
Therefore $y^{\prime}= \pm\left(\frac{1}{\alpha^{2}}-1-\frac{y}{\alpha^{2}}\right)^{\frac{1}{2}}$
Therefore $x+c=\mp 2 \alpha^{2}\left(\frac{1}{\alpha^{2}}-1-\frac{y}{\alpha^{2}}\right)^{\frac{1}{2}}$ (standard integration)
or $(x+c)^{2}=4 \alpha^{2}\left(\frac{1}{\alpha}^{2}-1-\frac{y}{\alpha^{2}}\right)$
But $y=0$ at $x= \pm 1 \Rightarrow C=0, \alpha^{2}=\frac{1}{2}$ and so $y=\frac{1}{2}\left(1-x^{2}\right)$

