In what follows you may assume that the following notation applies

$$
y=y(x), y^{\prime}=\frac{d y}{d x}
$$

You may also assume that, unless otherwise stated, y is a sufficiently continuously differentiable function.

Question

Find the curve joining the points $(0, \sqrt{2})$ and $(1,1)$ which makes

$$
I=\int_{0}^{1} d x y^{-1}\left(1+y^{\prime 2}\right)^{\frac{1}{2}}
$$

stationary, and show that for this curve $I=\operatorname{arctanh}\left(\frac{1}{\sqrt{2}}\right)$.

Answer

Again $F=\frac{\sqrt{1+y^{\prime 2}}}{y}=F\left(y, y^{\prime}\right)$ only, so $y^{\prime} \frac{\partial F}{\partial y^{\prime}}-F=$ const
Therefore $\frac{\partial F}{\partial y^{\prime}}=\frac{1}{2}{\frac{\left(1+y^{\prime 2}\right)^{0-\frac{1}{2}}}{y}}^{0} \times 2 y^{\prime}=\frac{y^{\prime}}{y \sqrt{1+y^{\prime 2}}}$
Therefore $\frac{y^{\prime}}{y \sqrt{1+y^{\prime 2}}}-\frac{\sqrt{1+y^{\prime 2}}}{y}=$ const
Therefore $\frac{1}{y \sqrt{1+y^{\prime 2}}}=$ const $=\alpha$ say
$\Rightarrow y^{\prime}= \pm\left(\frac{1}{\alpha^{2} y^{2}}-1\right)^{\frac{1}{2}}$
$\Rightarrow \alpha x+c= \pm\left(1-\alpha^{2} y^{2}\right)^{\frac{1}{2}}$ (standard integration)
$\Rightarrow(\alpha x+c)^{2}=1-\alpha^{2} y^{2}$
$y(0)=\sqrt{2}, y(1)=1 \Rightarrow c=0, \alpha^{2}=\frac{1}{2}$ and so extremals is the circle $\underline{x^{2}+y^{2}=2}$
In this case, $I=\int_{0}^{1} \frac{1}{y}\left(x+\frac{x^{2}}{y^{2}}\right)^{\frac{1}{2}} d x$
$=\int_{0}^{1} \frac{\sqrt{2} d x}{2-x^{2}}=\underline{\operatorname{arctanh}\left(\frac{1}{\sqrt{2}}\right)}$ standard integral

