In what follows you may assume that the following notation applies

$$
y=y(x), y^{\prime}=\frac{d y}{d x} .
$$

You may also assume that, unless otherwise stated, y is a sufficiently continuously differentiable function.

Question

Find the extremals for

$$
I(y, z)=\int_{0}^{\frac{\pi}{2}} d x\left(y^{\prime 2}+z^{\prime 2}+2 y z\right)
$$

subject to $y(0)=z(0)=0, y\left(\frac{\pi}{2}\right)=z\left(\frac{\pi}{2}\right)=1$.

Answer

This is a (generalisation 2) type problem with

$$
F=\left(y^{\prime 2}+z^{\prime 2}+2 y z\right)=F\left(y, y^{\prime}, z, z^{\prime}\right)
$$

Thus $\frac{\partial F}{\partial y^{\prime}}=2 y^{\prime}, \frac{\partial F}{\partial y}=2 z, \frac{\partial F}{\partial z^{\prime}}=2 z^{\prime}, \frac{\partial F}{\partial z}=2 y$ etc.
and we have simultaneous E-l equations:

$$
\begin{align*}
& \begin{array}{l}
\left.\begin{array}{l}
\frac{\partial F}{\partial y}-\frac{d}{d x}\left(\frac{\partial F}{\partial y^{\prime}}\right)=0 \\
\frac{\partial F}{\partial z}-\frac{d}{d x}\left(\frac{\partial F}{\partial z^{\prime}}\right)=0
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
2 z-\frac{d}{d x}\left(2 y^{\prime}\right)=0 \\
2 y-\frac{d}{d x}\left(2 z^{\prime}\right)=0
\end{array}\right\} \\
\Rightarrow\left\{\begin{array}{l}
y^{\prime \prime}-z=0 \\
z^{\prime \prime}-y=0
\end{array}\right\} \frac{\vec{d}^{2}}{d x^{2}}\left\{\begin{array}{l}
y^{(i v)}-z^{\prime \prime}=0 \\
z^{(i v)}-y^{\prime \prime}=0
\end{array}\right\} \Rightarrow\left\{\begin{array}{l}
y^{(i v)}-y=0 \\
z^{(i v)}-z==
\end{array}\right\}
\end{array} \begin{array}{l}
(1) \quad(2) \\
\text { (1) into (2) }
\end{array}
\end{align*}
$$

Thus
$y=A e^{x}+B e^{-x}+C \cos x+D \sin x$
$z=A e^{x}+B e^{-x}-C \cos x-D \sin x$
Boundary conditions:
$y(0)=z(0)=0 \Rightarrow A+B=0, C=0$
$y\left(\frac{\pi}{2}\right)=z\left(\frac{\pi}{2}\right)=1 \Rightarrow A^{-1}=2 \sinh \frac{\pi}{2}, D=0$
$\Rightarrow y=\frac{\sinh x}{\sinh \frac{\pi}{2}}, z=\frac{\sinh x}{\sinh \frac{\pi}{2}}$
NB could probably guess similarity of solution from symmetry of f in y, y^{\prime} and z, z^{\prime}.

