In what follows you may assume that the following notation applies

$$
y=y(x), y^{\prime}=\frac{d y}{d x} .
$$

You may also assume that, unless otherwise stated, y is a sufficiently continuously differentiable function.
Question Find the critical curves of the functionals
(i) $\int_{a}^{b}\left(y^{2}+y^{\prime 2}-2 y \sin x\right) d x$
(ii) $\int_{a}^{b}\left(y^{2}-y^{\prime 2}-2 y \sin x\right) d x$
(iii) $\int_{a}^{b}\left(y^{2}-y^{\prime 2}-2 y \cosh x\right) d x$
(iv) $\int_{a}^{b}\left(y^{2}+y^{\prime 2}-2 y e^{x}\right) d x$

Answer

(i) $F\left(y, y^{\prime}, x\right)=y^{2}+y^{\prime 2}-2 y \sin x$

$$
\frac{\partial F}{\partial y}=2 y-2 \sin x ; \frac{\partial F}{\partial y^{\prime}}=2 y^{\prime}
$$

E-L equation becomes:

$$
\begin{aligned}
& (2 y-2 \sin x)-\frac{d}{d x}\left(2 y^{\prime}\right)=0 \\
& \Rightarrow y-\sin x-y^{\prime \prime} \quad=0 \\
& \Rightarrow \quad y^{\prime \prime}-y=-\sin x
\end{aligned}
$$

Inhomogeneous 2nd order linear equation ODE with constant coefficients.
So $y=y_{\text {comp.func. }}+y_{\text {partic.int }}$.
$y_{c f} A e^{m x}+B e^{-m x}$ where A and B are constants where by substitution
$m^{2}-1=0 \Rightarrow m= \pm 1$
Therefore $y_{c f}=A e^{x}+B e^{-x}$

For particular integral try
$y_{P I}=C \cos x+D \sin x$
$y_{P I}^{\prime}=-C \sin x+D \cos x$
$y^{\prime \prime}{ }_{P I}=-C \cos x-D \sin x$
Substitution in (1) gives
$-C \cos x-D \sin x-C \cos x-D \sin x=-\sin x$
$\Rightarrow C=0, D=\frac{1}{2}$
Therefore $t=A e^{x}+B e^{-x}+\frac{1}{2} \sin x$ is extremal function would need to find A and B using boundary data; but we haven't been given any (only that $x=a$ and $x=b$ are the end points)
(ii) $F\left(y, y^{\prime}, x\right)=y^{2}-y^{\prime 2}-2 y \sin x$

$$
\frac{\partial F}{\partial y}=2 y-2 \sin x ; \frac{\partial F}{\partial y^{\prime}}=-2 y^{\prime}
$$

E-L equation becomes:

$$
\begin{array}{crll}
& (2 y-2 \sin x)-\frac{d}{d x}\left(-2 y^{\prime}\right) & =0 \\
\Rightarrow y-\sin x+y^{\prime \prime} & = & 0 \tag{2}\\
\Rightarrow & y^{\prime \prime}+y & =\sin x
\end{array}
$$

Same type of equation as in (i). Use same method to get solution
$y=-\frac{1}{2} x \cos x+A \cos x+B \sin x$
A and B to be determined from boundary data.
(iii) $F\left(y, y^{\prime}, x\right)=y^{2}-y^{\prime 2}-2 y \cosh x$
$\frac{\partial F}{\partial y}=2 y-2 \cosh x ; \frac{\partial F}{\partial y^{\prime}}=-2 y^{\prime}$
E-L equation becomes:

$$
\begin{array}{clll}
& (2 y-2 \cosh x)-\frac{d}{d x}\left(-2 y^{\prime}\right) & = & 0 \\
\Rightarrow y-\cosh x+y^{\prime \prime} & = & 0 & \tag{2}\\
\Rightarrow & y^{\prime \prime}+y & = & \cosh x
\end{array}
$$

Same type of equation as above. Use similar method to get solution
$y=-\frac{1}{2} \cosh x+A \cos x+B \sin x$
A and B to be determined from boundary data.
(iv) $F\left(y, y^{\prime}, x\right)=y^{2}+y^{\prime 2}+2 y e^{x}$
$\frac{\partial F}{\partial y}=2 y+2 e^{x} ; \frac{\partial F}{\partial y^{\prime}}=2 y^{\prime}$
E-L equation becomes:

$$
\begin{array}{rrrl}
& \left(2 y+2 e^{x}\right)-\frac{d}{d x}\left(2 y^{\prime}\right) & =0 \\
\Rightarrow y+e^{x}-y^{\prime \prime} & = & 0 \\
\Rightarrow & y^{\prime \prime}-y & =e^{x}
\end{array}
$$

Same type of equation as above. Use similar methods to get solution $y=-\frac{1}{2} x e^{x}+A e^{x}+B e^{-x}$
A and B to be determined from boundary data.

