In what follows you may assume that the following notation applies

$$
y=y(x), y^{\prime}=\frac{d y}{d x} .
$$

You may also assume that, unless otherwise stated, y is a sufficiently continuously differentiable function.

Question

The speed of light in a medium depends on a quantity ϵ and is given by $v=\frac{C}{\sqrt{\epsilon}}$ where c is constant. A ray of light travels from $A=(a, \alpha)$ to $B=(b, \beta)$ is a medium where the speed varies with height only, i.e. $\epsilon=\epsilon(y)$. Justify briefly that the time taken for the ray to travel an infinitesimal distance $d s$ at height y is given by $d t=\frac{d s}{v(y)}$. Hence show that the total time taken to travel between A and B is

$$
t=\int_{A}^{B} \frac{d s}{v(y)}=\int_{a}^{b} d x \sqrt{1+y^{\prime 2}}\left(\frac{\sqrt{\epsilon(y)}}{c}\right)=\int_{a}^{b} d x F\left(y, y^{\prime}\right)
$$

If the ray travels in the least possible time between these points, using the appropriate special case of the Euler equation show that the ray's path $y=$ $y(x)$ satisfies $K^{2}\left(1+y^{\prime 2}\right)=\epsilon$ for some constant K. Deduce that if $\epsilon=\epsilon(y)$, the ray travels in a parabola with the axis vertical.

Answer

In general for distance travelled $d s$ in $d t$ we have $\frac{d s}{d t}=V$ where V is the speed
$\Rightarrow d t=\frac{d s}{V(y)}$ is V just depends on y explicitly
Thus we have total time of flight

$$
\begin{array}{rlrl}
\int_{0}^{t} d t & =\int_{A}^{B} \frac{d s}{V(y)}- \\
\Rightarrow \quad t & & =\int_{A}^{B} \frac{d s}{V(y)}=\int_{x=a}^{x=b} d x \frac{\sqrt{1+y^{\prime 2}}}{V(y)} \\
\Rightarrow \quad & t & =\int_{a}^{b} d x \underbrace{\sqrt{1+y^{\prime 2}}\left(\frac{\sqrt{\epsilon(y)}}{c}\right)}
\end{array}
$$

Clearly this is only an explicit function of $F=F\left(y, y^{\prime}\right)$
if the rays follow the path of least time, use the E-L equation for $F=F\left(y, y^{\prime}\right)$:
$y^{\prime} \frac{\partial F}{\partial y^{\prime}}-F=\mathrm{const}$
$\frac{\partial F}{\partial y^{\prime}}=\frac{y^{\prime}}{\sqrt{1+{y^{\prime}}^{2}}} \frac{\sqrt{\epsilon(y)}}{c}$
Therefore $\frac{y^{\prime 2} \sqrt{\epsilon(y)}}{\sqrt{1+y^{\prime 2}}} c-\sqrt{1+y^{\prime 2}} \frac{\sqrt{\epsilon(y)}}{c}=$ const
$\Rightarrow \frac{\sqrt{\epsilon(y)}}{c \sqrt{1+y^{\prime 2}}}=$ const
$\Rightarrow \epsilon(y)=\left(1+y^{\prime 2}\right) K^{2}$ for some constant K.
Thus $\epsilon(y)=\left(1+y^{\prime 2}\right) K^{2}=y$ from question
$\Rightarrow K y^{\prime}= \pm \sqrt{y-K^{2}}$
$\Rightarrow y=K^{2}+\frac{(x+c)^{2}}{4 K^{2}}$ (by standard integrals)
which as a parabola as required.

