In what follows you may assume that the following notation applies

$$y = y(x), \ y' = \frac{dy}{dx}.$$

You may also assume that, unless otherwise stated, y is a sufficiently continuously differentiable function.

Question

The smooth curve y(x) is defined for $-\log 2 \le x \le \log 2$ and is such that $y(\pm \log 2) = \frac{5}{4}$. If the curve is rotated about the x-axis, show that the area of the surface of revolution thus generated is given by

$$A = 2\pi \int_{-\log 2}^{\log 2} y \sqrt{1 + {y'}^2} \, dx$$

Hence show that the extremal y satisfies

$$\frac{y}{\sqrt{1+{y'}^2}} = const.$$

and thus the area is stationary if $y = \cosh x$.

Now consider a surface of rotation in the shape of a cylindrical spool formed from two parallel discs of radius $\frac{5}{4}$ placed at $x=\pm\log 2$, joined along the x axis by an infinitely thin rod. By simple geometry, show that the surface area of this shape if given by $\frac{25\pi}{8}$ and is thus less than the apparent minimum value obtained with $y=\cosh x$. How do you explain this apparent contradiction? (Hint: remember the assumptions on differentiability that have been made in the first part of the question.)

Answer

PICTURE

Standard calculus gives Surface area $\underline{dA} = \underline{2\pi y} \underline{ds}$ elemental surface area circumference element width Thus

$$A = \int 2\pi y \, ds$$
$$= 2\pi \int y \sqrt{1 + y'^2} \, dx$$

standard results, see lecture notes
$$A = 2\pi \int_{x=-\log 2}^{x=+\log 2} y \sqrt{1+{y'}^2} \, dx$$
 as required

F = F(y, y') only, so E-L equation has first integral $y' \frac{\partial F}{\partial u'} - F = const$

$$\frac{\partial F}{\partial y'} = \frac{2\pi y y'}{\sqrt{1 + y'^2}}$$

$$\Rightarrow \frac{2\pi y y'^2}{\sqrt{1 + y'^2}} - 2\pi y \sqrt{1 + y'^2} = const$$

$$\Rightarrow \frac{2\pi y}{\sqrt{1 + y'^2}} = const$$

$$\Rightarrow \frac{y}{\sqrt{1 + y'^2}} = const = \alpha say$$

Thus we have $y'^2 = \frac{y^2}{\alpha^2} - 1$ which is solved via standard integrals to give

$$y = \alpha \cosh\left(\frac{x}{\alpha} + c\right)$$
 for constant c, alpha

From symmetry of boundary conditions, we need c=0. The other condition is satisfied with $\alpha = 1$. Thus $y = \cosh x$ is the extremal solution. Surface of rotation

PICTURE

Surface area (inside $-\log 2 < x < \log 2$) is $2 \times \left[\pi \times \left(\frac{5}{4}\right)^2\right] = \frac{25\pi}{8} = 9.817...(A)$

Now on extremal $y = \cosh x$ we have

$$A = 2\pi \int_{-\log 2}^{+\log 2} \cosh^2 x \, dx$$
$$= 2\pi \left[\log 2 + \frac{1}{2} \sinh(2\log 2) \right]$$
$$= 10.25 (B)$$

Clearly (B) > (A), but we have assumed that $y = \cosh x$ is a minimum. Assuming is still is (can be confirmed by considering second variation) there is an apparent contradiction. The resolution is that the disc case is <u>not</u> formed by the rotation of a <u>smooth</u> function as we have assumed in the case of (B). Thus $y = \cosh x$ is the minimal result if we restrict the solution to smooth functions as in the question, the disc result is not a valid solution. Hence no paradox!