Exam Question

Topic: CriticalPoints

Find and classify the critical points of the function

$$f(x,y) = y(x-3)^2 - (x-y)(x+y-6).$$

Solution

 $f(x,y) = y(x-3)^2 - (x-y)(x+y-6)$, so equating the partial derivatives to zero gives

$$f_x = 2y(x-3) - 2x + 6 = 0 (1)$$

$$f_x = 2y(x-3) - 2x + 6 = 0$$
 (1)
 $f_y = (x-3)^2 + 2y - 6 = 0$ (2)

Equation (1) gives 2(x-3)(y-1)=0 so x=3 or y=1. From equation (2), x = 3 gives 2y - 6 = 0; y = 3.

Also from equation (2), y = 1 gives $(x - 3)^2 = 4$, so x = 1 or x = 5. So the critical points are (1,1), (3,3), (5,1).

the second partial derivatives are $f_{xx} = 2y - 2$, $f_{yy} = 2$, $f_{xy} = 2(x - 3)$.

	f_{xx}	f_{yy}	f_{xy}	$\Delta = f_{xy}^2 - f_{xx}f_{yy}$	Type
(1,1)	0	2	-4	16 > 0	SADDLE
(3,3)	4	2	0	-8 < 0	$MIN (f_{xx} > 0)$
(5,1)	0	2	4	16 > 0	SADDLE