Question

We have defined
$$m^*$$
 by $m^*(S) = \inf \left\{ \sum_{i=1}^{\infty} |R_i| : \bigcup_{i=1}^{\infty} R_i \supseteq S \right\}$

Let n_{δ}^* be defined by

$$n_{\delta}^{*}(S) = \inf \left\{ \sum_{i=1}^{\infty} |R_{i}| : \bigcup_{i=1}^{\infty} R_{i} \supseteq S, |R_{i}| < \delta, i = 1, 2, \cdots \right\}$$

Show that n_{δ}^{*} is a monotonic function of δ .

Define
$$n^*$$
 by $n^*(S) = \lim_{\delta \to 0+} n^*_{\delta}(S)$

Show that
$$n^*(S) = m^*(S)$$

Answer

If $\delta < \delta'$ then $n_{\delta}^*(S)$ is an infimum taken over a smaller set than $n_{\delta'}(S)$ Hence $n_{\delta}^*(S) \ge n_{\delta'}^*(S)$

Thus $n_{\delta}^*(S)$ tends to a limit as $\delta \to 0+$.

Now $n_{\delta}^*(S)$ is an infimum taken over a smaller set than $m^*(S)$. Therefore $m^*(S) \leq n^*_\delta(S) \leq n^*(S)$

Now for all ϵ there exists $\{R_i\}$ $\sum_{i=1}^{\infty} |R_i| < m^*(S) + \epsilon$

Let $\delta > 0$ and choose each rectangle R_i into sub-rectangles $\{R_{ij}\}_{j=1}^{m_j}$ so that $|R_{ij}| < \delta$.

Then
$$|R_i| = \sum_{j=1}^{m_i} |R_{ij}| \quad \bigcup_j Rij = R_i$$

So
$$\bigcup_{ij} R_{ij} \supseteq S \quad |R_{ij}| < \delta$$
.

Hence
$$n_{\delta}^*(S) \leq \sum_{i} |R_{ij}| = \sum_{i} |R_{ii}| < m^*(S) + \epsilon$$

Therefore $n_{\delta}^*(S) \leq m^*(S) + \epsilon$ for all ϵ , for all δ

Therefore
$$n_{\delta}^*(S) \leq m^*(S) + \epsilon$$
 for all ϵ , for all δ

Therefore
$$n^*(S) \leq m^*(S) + \epsilon$$

Therefore
$$n^*(S) \leq m^*(S)$$

Therefore
$$n^*(S) = m^*(S)$$