Question

(More difficult) Consider the problem

$$
\varepsilon y^{\prime \prime}=y^{2}=0, y(0)=1, y(1)=1, \varepsilon \rightarrow 0^{+} .
$$

Try to solve this when $0 \leq x \leq 1$ by using a regular perturbation scheme of the type

$$
y(x ; \varepsilon)=y_{0}(x)+\varepsilon y_{1}(x)+O\left(\varepsilon^{2}\right)
$$

Show that it is not possible for thus outer type of expansion to satisfy the boundary conditions at either end. Hence deduce that there must be a boundary layer near both $x=0$ and $x=1$.
You are given that both boundary layers have a width of order $\varepsilon^{\frac{1}{2}}$. Determine one term of the inner solution near to the origin in the standard way. Repeat this for the second inner solution near to $x=1$. match the two inner expansions to the common outer expansion in the relevant regions.
Hint: The solution $Y^{\prime \prime}-Y^{2}=0$ can be obtained by first reducing the order with the substitution $u=Y^{\prime}$ (hence $Y^{\prime \prime}=u^{\prime}=\frac{d u}{d Y} \frac{d Y}{d x}=u \frac{d u}{d Y}$), solving for u, and then resubstituting for Y in the resulting equation. Also use the fact that if $\lim _{x \rightarrow \infty} Y=0$ then $\lim _{x \rightarrow \infty} Y^{\prime}=0$.

Answer

This is difficult: it has 2 boundary layers and $O\left(\varepsilon^{\frac{1}{2}}\right)$ width.
Given

$$
\varepsilon y^{\prime \prime}-y^{2}=0 ; y(0)=1, y(1)=1 ; \varepsilon \rightarrow 0^{+}
$$

we try the usual ansatz anyway:

$$
\begin{aligned}
& y(x ; \varepsilon)=y_{0}(x)+\varepsilon y_{1}(x)+O\left(\varepsilon^{2}\right) \\
& \Rightarrow \varepsilon y_{0}^{\prime \prime}-y_{0}^{2}-2 \varepsilon y_{0} y_{1}=O\left(\varepsilon^{2}\right) ; y_{0}(1)=1, y_{r}(1)=0(r>0) \\
& \frac{O\left(\varepsilon^{0}\right)}{-y_{0}^{2}=0} \Rightarrow y-0=0 \text { but } \mathrm{y}_{0}(1)=1 \text { from boundary data. }
\end{aligned}
$$

Therefore inconsistency.
Hence usual ansatz can't work at $x=0$.
Equally, if we think of using ansatz at $x=0$ we run into the same problem:
$y_{0}=0$ by $y_{0}(0)=1$.
Hence we must have a boundary layer at both ends:

Boundary layer Boundary layer

\square		\vdots
\vdots	$y_{0}=0$	\vdots

Near $x=0$
Try inner variable $X=\frac{x}{\varepsilon^{\frac{1}{2}}}$

$$
\Rightarrow \partial_{x}=\frac{1}{\varepsilon^{\frac{1}{2}}} \partial_{X}
$$

and use ansatz $y\left(\varepsilon^{\frac{1}{2}} X ; \varepsilon\right)=Y(X ; \varepsilon)$

$$
Y(X ; \varepsilon)=Y_{0}(X)+\varepsilon^{\frac{1}{2}} Y_{1}(X)+O(\varepsilon)
$$

Substitute into equation:

$$
\begin{gathered}
\frac{{ }_{\varepsilon}^{\varepsilon}}{\varepsilon} Y_{0}^{\prime \prime}-\frac{\varepsilon}{\varepsilon} \varepsilon^{\frac{1}{2}} Y_{1}^{\prime \prime}(X)-Y_{0}^{2}-2 \varepsilon^{\frac{1}{2}} Y_{0} Y_{1}=0 \\
Y_{0}^{\prime \prime}-Y_{0}^{2}=O\left(\varepsilon^{\frac{1}{2}}\right)
\end{gathered}
$$

Boundary date: only $x=0$ is relevant and we get $y(0)=1 \Rightarrow Y(0)=1 \Rightarrow$ $Y_{0}(0)=1, Y_{r>0}(0)=0$
Therefore $O\left(\varepsilon^{0}\right)$
$Y_{0}^{\prime \prime}-Y_{0}^{2}=0 ; Y_{0}(0)=1$
Again 2nd order equation. 1 boundary condition \Rightarrow matching.
Solve this by setting $\left.\begin{array}{rl}u & =Y_{0}^{\prime} \\ u^{\prime} & =Y_{0}^{\prime \prime}\end{array}\right\}$ by hint of question
$u=\frac{d Y_{0}}{d X} \Rightarrow \frac{d^{2} Y_{0}}{d X^{2}}=\frac{d u}{d X}=\frac{d u}{d Y_{0}} \times \frac{d Y_{0}}{d X}=\frac{d u}{d Y_{0}} Y_{0}^{\prime}=u \frac{d u}{d Y_{0}}$

Therefore

$$
\begin{align*}
u \frac{d u}{d Y_{0}}-Y_{0}^{2} & =0 \\
\Rightarrow \int u d u & =\int Y_{0}^{2} d Y_{0} \\
\frac{u^{2}}{2} & =\frac{Y_{0}^{3}}{3}+\text { const } \\
\text { or } \frac{1}{2}\left(\frac{\mathrm{dY}}{0}\right)^{2} & =\frac{Y_{0}^{3}}{3}+c \\
\text { or } \frac{\mathrm{dY}}{0} & \\
\hline \mathrm{dX} & \pm \sqrt{\frac{2}{3} Y_{0}^{3}+2 c}
\end{align*}
$$

This is tricky to solve unless we start imposing boundary conditions. We know $Y_{0}(0)=1$ but this doesn't tell us about $\frac{d Y_{0}}{d X}$. Clearly though if things are to match up, we must have at leading order.

$$
Y_{0} \rightarrow y_{0}=0 \text { as } \varepsilon \rightarrow 0^{+}
$$

i.e., as $X \rightarrow+\infty$ in the outer (middle) region

Therefore $\lim _{X \rightarrow \infty} Y_{0}=0$.
Thus if $\lim _{X \rightarrow+\infty} Y_{0}=0$ the curve $Y_{0}(X)$ must flatten.
So $Y_{0}^{\prime} \rightarrow 0$ as $X \rightarrow+\infty$
Therefore $0= \pm \sqrt{0+2 c}$ as $X \rightarrow+\infty$ from (\star).
Hence $\frac{d Y_{0}}{d X}= \pm \sqrt{\frac{2}{3}} Y_{0}^{\frac{3}{2}}$
which is variables separable

$$
\begin{aligned}
\int Y_{0}^{-\frac{3}{2}} d Y_{0} & = \pm \int \sqrt{\frac{2}{3}} d X \\
-2 Y_{0}^{-\frac{1}{2}}+D & = \pm \sqrt{\frac{2}{3}} X
\end{aligned}
$$

Now we can use the actual boundary condition: $Y_{0}(0)=1$

$$
\begin{aligned}
& 0=D-2 \Rightarrow D=2 \\
& \text { Therefore } 2-\frac{2}{\sqrt{\mathrm{Y}_{0}}}= \pm \sqrt{\frac{2}{3}} \mathrm{X} \\
& \Rightarrow Y_{0}=\frac{1}{\left(1 \mp \sqrt{\frac{1}{6}} X\right)^{2}}
\end{aligned}
$$

Now, if we don't want a singularity for finite X, the - sign must be discarded. Hence

$$
Y_{0}=\frac{1}{\left(1+\sqrt{\frac{1}{6}} X\right)^{2}}
$$

Near $x=1$:
To determine the inner expansion.
Near $x=1$ we use
layer near $x=1$
$z=\frac{\overbrace{1-x}^{\underbrace{\frac{1}{2}}}}{}$, say
since $O\left(\varepsilon^{\frac{1}{2}}\right)$ width is given to you
Therefore $\partial_{x}=\frac{\partial z}{\partial x} \partial_{z}=-\frac{1}{\varepsilon^{\frac{1}{2}}} \partial_{z}$
and $y\left(1-\varepsilon^{\frac{1}{2}} z ; \varepsilon\right)=\bar{Y}(z ; \varepsilon)$
and $\bar{Y}(z ; \varepsilon)=\bar{Y}_{0}(z)+\varepsilon^{\frac{1}{2}} \bar{Y}_{1}(z)+O(\varepsilon)$
Equation becomes:
$\frac{\varepsilon}{\left(-\varepsilon^{\frac{1}{2}}\right)} \frac{\partial^{2} \bar{Y}}{\partial z^{2}}-\bar{Y}^{2}=0 \Rightarrow \frac{\partial^{2} \bar{Y}}{\partial z^{2}}-\bar{Y}^{2}=0$
so $\bar{Y}_{0}{ }^{2}-\bar{Y}_{0}^{2}=O\left(\varepsilon^{\frac{1}{2}}\right)$
This is the same equation as at $x=0$ so we expect a solution

$$
\frac{d \bar{Y}_{0}}{d z}= \pm \sqrt{\frac{2}{3} \bar{Y}_{0}^{3}+\bar{c}}
$$

Again since $y(1)=1 \quad(x=1 \Rightarrow z=0) \Rightarrow \bar{Y}_{0}(0)=1$ and since \bar{Y}_{0} must match onto $y_{0}=0$ as $\varepsilon \rightarrow+\infty$ i.e., as $z \rightarrow+\infty$

Therefore we also have $\bar{Y}_{0}{ }^{\prime} \rightarrow 0$ as $z \rightarrow+\infty$ as before. Hence we get an identical solution:

$$
\bar{Y}_{0}=\frac{1}{\left(1+\sqrt{\frac{1}{6}} z\right)^{2}}
$$

(negative sign discarded to avoid singularity at finite z)
Rewrite in original variables and summarise:

$$
\left\{\begin{array}{l}
y \sim \frac{1}{\left(1+\frac{1}{\sqrt{6}} \frac{x}{\varepsilon^{\frac{1}{2}}}\right)}, x=o\left(\varepsilon^{\frac{1}{2}}\right) \\
y \sim 0, o\left(\varepsilon^{\frac{1}{2}}\right)<x<O\left(\varepsilon^{\frac{1}{2}}\right) \\
y \sim \frac{1}{\left(1+\frac{1}{\sqrt{6}} \frac{(1-x)}{\left.\varepsilon^{\frac{1}{2}}\right)^{2}}, x-1=O\left(\varepsilon^{\frac{1}{2}}\right)\right.}
\end{array}\right.
$$

Solution
PICTURE

