Question

(More difficult) Consider the problem

$$\varepsilon y'' = y^2 = 0, \ y(0) = 1, \ y(1) = 1, \ \varepsilon \to 0^+.$$

Try to solve this when $0 \le x \le 1$ by using a regular perturbation scheme of the type

$$y(x;\varepsilon) = y_0(x) + \varepsilon y_1(x) + O(\varepsilon^2)$$

Show that it is not possible for thus outer type of expansion to satisfy the boundary conditions at either end. Hence deduce that there must be a boundary layer near both x = 0 and x = 1.

You are given that both boundary layers have a width of order $\varepsilon^{\frac{1}{2}}$. Determine one term of the inner solution near to the origin in the standard way. Repeat this for the second inner solution near to x = 1. match the two inner expansions to the common outer expansion in the relevant regions.

Hint: The solution $Y'' - Y^2 = 0$ can be obtained by first reducing the order with the substitution u = Y' (hence $Y'' = u' = \frac{du}{dY}\frac{dY}{dx} = u\frac{du}{dY}$), solving for u, and then resubstituting for Y in the resulting equation. Also use the fact that if $\lim_{x\to\infty} Y = 0$ then $\lim_{x\to\infty} Y' = 0$.

Answer

This is difficult: it has 2 boundary layers and $O(\varepsilon^{\frac{1}{2}})$ width. Given

$$\varepsilon y'' - y^2 = 0; \ y(0) = 1, \ y(1) = 1; \ \varepsilon \to 0^+$$

we try the usual ansatz anyway:

$$y(x;\varepsilon) = y_0(x) + \varepsilon y_1(x) + O(\varepsilon^2)$$

 $\Rightarrow \varepsilon y_0'' - y_0^2 - 2\varepsilon y_0 y_1 = O(\varepsilon^2); \ y_0(1) = 1, \ y_r(1) = 0 \ (r > 0)$ $\frac{O(\varepsilon^0)}{2} \Rightarrow y - 0 = 0 \text{ but } y_0(1) = 1 \text{ from boundary data.}$ Therefore inconsistency. Hence usual ansatz <u>can't work</u> at x = 0.

Equally, if we think of using ansatz at x = 0 we run into the same problem: $y_0 = 0$ by $y_0(0) = 1$.

Hence we must have a boundary layer at both ends:

Boundary layer
Boundary layer

$$y_0 = 0$$

 $x = 0$
You are given that layers are $O(\frac{x_1}{\varepsilon^2})$ in width.
Near $x = 0$
Try inner variable $X = \frac{x}{\varepsilon^{\frac{1}{2}}}$

$$\Rightarrow \partial_x = \frac{1}{\varepsilon^{\frac{1}{2}}} \partial_X$$

and use ansatz $y(\varepsilon^{\frac{1}{2}}X;\varepsilon)=Y(X;\varepsilon)$

$$Y(X;\varepsilon) = Y_0(X) + \varepsilon^{\frac{1}{2}}Y_1(X) + O(\varepsilon)$$

Substitute into equation:

$$\frac{\varepsilon}{\varepsilon}Y_0'' - \frac{\varepsilon}{\varepsilon}\varepsilon^{\frac{1}{2}}Y_1''(X) - Y_0^2 - 2\varepsilon^{\frac{1}{2}}Y_0Y_1 = 0$$
$$Y_0'' - Y_0^2 = O(\varepsilon^{\frac{1}{2}})$$

Boundary date: only x = 0 is relevant and we get $y(0) = 1 \Rightarrow Y(0) = 1 \Rightarrow$ $Y_0(0) = 1, Y_{r>0}(0) = 0$

 $Y_{0}(0) = 1, \ I_{r>0}(0) = 0$ Therefore $O(\varepsilon^{0})$ $Y_{0}'' - Y_{0}^{2} = 0; \ Y_{0}(0) = 1$ Again 2nd order equation. 1 boundary condition \Rightarrow matching. Solve this by setting $\begin{array}{c} u = Y_{0}' \\ u' = Y_{0}'' \\ \end{array}$ by hint of question $u = \frac{dY_0}{dX} \Rightarrow \frac{d^2Y_0}{dX^2} = \frac{du}{dX} = \frac{du}{dY_0} \times \frac{dY_0}{dX} = \frac{du}{dY_0}Y_0' = u\frac{du}{dY_0}$

$$u\frac{du}{dY_0} - Y_0^2 = 0$$

$$\Rightarrow \int u \, du = \int Y_0^2 \, dY_0$$

fore

$$\frac{u^2}{2} = \frac{Y_0^3}{3} + const$$

or
$$\frac{1}{2} \left(\frac{dY_0}{dX}\right)^2 = \frac{Y_0^3}{3} + c$$

or
$$\frac{dY_0}{dX} = \pm \sqrt{\frac{2}{3}Y_0^3 + 2c} \quad (\star)$$

Therefore

This is tricky to solve unless we start imposing boundary conditions. We know $Y_0(0) = 1$ but this doesn't tell us about $\frac{dY_0}{dX}$. Clearly though if things are to match up, we must have at leading order.

$$Y_0 \to y_0 = 0 \text{ as } \varepsilon \to 0^+$$

i.e., as $X \to +\infty$ in the outer (middle) region Therefore $\lim_{X\to\infty} Y_0 = 0$. Thus if $\lim_{X\to+\infty} Y_0 = 0$ the curve $Y_0(X)$ must <u>flatten</u>. So $Y'_0 \to 0$ as $X \to +\infty$ Therefore $0 = \pm \sqrt{0 + 2c}$ as $X \to +\infty$ from (*). Hence $\frac{dY_0}{dX} = \pm \sqrt{\frac{2}{3}Y_0^{\frac{3}{2}}}$ which is variables separable

$$\int Y_0^{-\frac{3}{2}} dY_0 = \pm \int \sqrt{\frac{2}{3}} dX$$
$$-2Y_0^{-\frac{1}{2}} + D = \pm \sqrt{\frac{2}{3}} X$$

Now we can use the actual boundary condition: $Y_0(0) = 1$

$$0 = D - 2 \Rightarrow D = 2$$

Therefore $2 - \frac{2}{\sqrt{Y_0}} = \pm \sqrt{\frac{2}{3}}X$
 $\Rightarrow Y_0 = \frac{1}{(1 \pm \sqrt{\frac{1}{6}}X)^2}$

Now, if we don't want a singularity for finite X, the - sign must be discarded. Hence

$$\frac{Y_0 = \frac{1}{(1 + \sqrt{\frac{1}{6}}X)^2}}{(1 + \sqrt{\frac{1}{6}}X)^2}$$

<u>Near x = 1:</u>

To determine the inner expansion. Near x = 1 we use layer near x = 1 $z = \underbrace{1-x}_{x}$ say

$$z = \frac{1-\omega}{\varepsilon^{\frac{1}{2}}}, \text{ say}$$

since $O(\varepsilon^{\frac{1}{2}})$ width is given to you

Therefore
$$\partial_x = \frac{\partial z}{\partial x} \partial_z = -\frac{1}{\varepsilon^{\frac{1}{2}}} \partial_z$$

and $y(1 - \varepsilon^{\frac{1}{2}}z;\varepsilon) = \bar{Y}(z;\varepsilon)$
and $\bar{Y}(z;\varepsilon) = \bar{Y}_0(z) + \varepsilon^{\frac{1}{2}}\bar{Y}_1(z) + O(\varepsilon)$
Equation becomes:
 $\frac{\varepsilon}{(-\varepsilon^{\frac{1}{2}})} \frac{\partial^2 \bar{Y}}{\partial z^2} - \bar{Y}^2 = 0 \Rightarrow \frac{\partial^2 \bar{Y}}{\partial z^2} - \bar{Y}^2 = 0$
so $\bar{Y}_0^2 - \bar{Y}_0^2 = O(\varepsilon^{\frac{1}{2}})$

This is the same equation as at x = 0 so we expect a solution

$$\frac{d\bar{Y}_0}{dz} = \pm \sqrt{\frac{2}{3}\bar{Y}_0{}^3 + \bar{c}}$$

Again since y(1) = 1 $(x = 1 \Rightarrow z = 0) \Rightarrow \overline{Y}_0(0) = 1$ and since \overline{Y}_0 must match onto $y_0 = 0$ as $\varepsilon \to +\infty$ i.e., as $z \to +\infty$

Therefore we also have $\bar{Y_0}' \to 0$ as $z \to +\infty$ as before. Hence we get an identical solution:

$$\bar{Y}_0 = \frac{1}{(1 + \sqrt{\frac{1}{6}}z)^2}$$

(negative sign discarded to avoid singularity at finite z) Rewrite in original variables and summarise:

$$\begin{cases} y \sim \frac{1}{\left(1 + \frac{1}{\sqrt{6}} \frac{x}{\varepsilon^{\frac{1}{2}}}\right)}, \ x = o(\varepsilon^{\frac{1}{2}}) \\ y \sim 0, \ o(\varepsilon^{\frac{1}{2}}) < x < O(\varepsilon^{\frac{1}{2}}) \\ y \sim \frac{1}{\left(1 + \frac{1}{\sqrt{6}} \frac{(1-x)}{\varepsilon^{\frac{1}{2}}}\right)^{2}}, \ x - 1 = O(\varepsilon^{\frac{1}{2}}) \end{cases}$$

Solution PICTURE