Question

Find the general solution of the differential equation

$$y' + y^2 = 1$$

by separation of variables. Examine the same equation by dominant balance as $x \to +\infty$, comparing the results with the exact solution.

Answer

$$y' + y^2 = 1 \Rightarrow y' = 1 - y^2 \Rightarrow \frac{y'}{1 - y^2} = 1$$

Therefore
$$\int \frac{dy}{1-y^2} = \int dx \Rightarrow y = \frac{1-Ae^{-2x}}{1+Ae^{-2x}}$$
 $A = const$

$$y' = 1 \Rightarrow y = x + c \Rightarrow y^2 = O(x^2)$$
 so $y' = o(y^2)$. Inconsistent.

$$\overline{\underline{y'=y^2}} \Rightarrow \int \frac{y'}{y^2} = \int dx \Rightarrow -\frac{1}{y} = x + c \Rightarrow y = -\frac{1}{x+c} = o(1) \text{ as } x \to +\infty.$$

Inconsistent.

This is the balance.
$$y' = 0 = o(1)$$
 as $x \to \infty$!

Therefore $y \sim \pm 1$ as $x \to \infty$.

Second order balance: $y = +1 + y_1$ where $y_1 = o(1) *$

(Take +1 only)

$$(1+y_1)' + (1+y_1)^2 = 1$$

Then
$$y'_1 + 1 + 2y_1 + y_1^2 = 1$$

 $y'_1 + 2y_1 + y_1^2 = 0$

Balance

$$\underline{y_1' = -2y_1} \Rightarrow \int \frac{y_1'}{y_1'} = -2 \int dx \Rightarrow y_1 = Be^{-2x} \Rightarrow y_1^2 = O(e^{-4x}) = o(e^{-2x}) \to \text{consistent.}$$

NB Other choice of -1 leads to inconsistency

$$\rightarrow y \sim -1 \Rightarrow y_1 = O(e^{2x}) = o(e^{4x})$$

$$\frac{y_1 = -y_1^2}{y_1^2} \Rightarrow \int \frac{y_1'}{y_1^2} = -\int dx \Rightarrow -\frac{1}{y_1'} = -x + c \Rightarrow y_1 = O\left(\frac{1}{x}\right) \quad x \to +\infty.$$
Hence $y_1^2 = o(y_1)$ as $x \to +\infty$. INCONSISTENT.

$$\underline{2y_1 = -y_1^2} \Rightarrow y_1 = 0$$
 (gives an exact solution: $\underline{y = \pm 1} \Rightarrow y' = 0$ and $y^2 = 1$) or $y_1 = -2$. (This is not $o(1)$ as assumed \star)

Therefore we get either $y=\pm 1$ exactly or $y\sim 1-Be^{-2x}$ $x\to +\infty$ which is consistent with the expansion of the exact result if B=2A (as $x\to +\infty$).