Question

Show that the eigenvalue problem

$$y'' + \lambda y = 0, y'(0) = 0, y(1) + y'(1) = 0$$

has eigenvalues $\lambda = \mu^2$ with μ any root of $\mu \tan \mu = 1$. By means of a suitable sketch, show that this equation has a solution μ_n satisfying

$$n\pi < \mu_n < \left(n + \frac{1}{2}\right)\pi, \ n = 0, 1, 2, \cdots$$

Hence justify the approximation $\mu_n = n\pi + m_1$ where $m_1 = o(n\pi)$. Substitute this into $\mu \tan \mu = 1$ and expand in powers of m_1 showing that $m_1 = \frac{1}{n\pi}$.

Answer

 $y'' + \lambda y = 0, y'(0) = 0$ (A), y(1) + y'(1) = 0 (B) Clearly $y = A \sin \sqrt{\lambda}x + B \cos \sqrt{\lambda}x$ A, B const

Boundary conditions: (A): $0 = A\sqrt{\lambda}\cos 0 - B\sqrt{\lambda}\sin 0$ (B): $0 = B\cos\sqrt{\lambda} - B\sqrt{\lambda}\sin\sqrt{\lambda}$ Assume $B \neq 0$ then must have

$$\cos\sqrt{\lambda} = \sqrt{\lambda}\sin\sqrt{\lambda} \Rightarrow \sqrt{\lambda}\tan\sqrt{\lambda} = 1$$

or if $\sqrt{\lambda} = \mu^2$, $\mu \tan \mu = 1$ PICTURE

From diagram (for μ not so large and positive) we have

$$n\pi < \mu_n < \left(n + \frac{1}{2}\right)\pi \quad n \in \mathbf{Z}^+$$

Since root $\rightarrow 0$ in limit from above and $\tan \mu > 0$ for $n\pi < \mu < \left(n + \frac{1}{2}\right)\pi$ $n \in \mathbb{Z}^+$.

Clearly root is small and $\tan \mu = 0$ when $\mu = n\pi$. Therefore $\mu_n = n\pi + m_1$ where m_1 is small, say $o(n\pi)$ Substitute into $\mu \tan \mu = 1$:

$$(n\pi + m_1) \tan(n\pi + m_1) = 1 (n\pi + m_1) \left[\frac{\tan n\pi + \tan m_1}{1 - \tan n\pi \tan m_1} \right] = 1 (n\pi + m_1) \tan m_1 = 1 \left(1 + \frac{m_1}{n\pi} \right) \tan m_1 = \frac{1}{n\pi}$$

So to leading order in n

$$\tan m_1 = \frac{1}{n\pi}$$

As $n \to +\infty$, $m_1 \approx \tan m_1$ as m_1 is small $\Rightarrow m_1 \approx \frac{1}{n\pi}$
Therefore $\mu_n \sim n\pi + \frac{1}{n\pi} + o\left(\frac{1}{n\pi}\right)$.