Question

Show that the eigenvalue problem

$$
y^{\prime \prime}+\lambda y=0, y^{\prime}(0)=0, y(1)+y^{\prime}(1)=0
$$

has eigenvalues $\lambda=\mu^{2}$ with μ any root of $\mu \tan \mu=1$. By means of a suitable sketch, show that this equation has a solution μ_{n} satisfying

$$
n \pi<\mu_{n}<\left(n+\frac{1}{2}\right) \pi, n=0,1,2, \cdots
$$

Hence justify the approximation $\mu_{n}=n \pi+m_{1}$ where $m_{1}=o(n \pi)$. Substitute this into $\mu \tan \mu=1$ and expand in powers of m_{1} showing that $m_{1}=\frac{1}{n \pi}$.

Answer
$y^{\prime \prime}+\lambda y=0, y^{\prime}(0)=0(A), y(1)+y^{\prime}(1)=0 \quad(B)$
Clearly $y=A \sin \sqrt{\lambda} x+B \cos \sqrt{\lambda} x \quad A$, Bconst
Boundary conditions:
$(A): 0=A \sqrt{\lambda} \cos 0-B \sqrt{\lambda} \sin 0$
$(B): 0=B \cos \sqrt{\lambda}-B \sqrt{\lambda} \sin \sqrt{\lambda}$
Assume $B \neq 0$ then must have

$$
\cos \sqrt{\lambda}=\sqrt{\lambda} \sin \sqrt{\lambda} \Rightarrow \sqrt{\lambda} \tan \sqrt{\lambda}=1
$$

or if $\sqrt{\lambda}=\mu^{2}, \mu \tan \mu=1$
PICTURE

From diagram (for μ not so large and positive) we have

$$
n \pi<\mu_{n}<\left(n+\frac{1}{2}\right) \pi \quad n \in \mathbf{Z}^{+}
$$

Since root $\rightarrow 0$ in limit from above and $\tan \mu>0$ for $n \pi<\mu<\left(n+\frac{1}{2}\right) \pi n \in$ Z^{+}.
Clearly root is small and $\tan \mu=0$ when $\mu=n \pi$.
Therefore $\mu_{n}=n \pi+m_{1}$ where m_{1} is small, say $o(n \pi)$
Substitute into $\mu \tan \mu=1$:

$$
\begin{aligned}
& \left(n \pi+m_{1}\right) \tan \left(n \pi+m_{1}\right)=1 \\
& \left(n \pi+m_{1}\right)\left[\frac{\tan n \pi+\tan m_{1}}{1-\tan n \pi \tan m_{1}}\right]=1 \\
& \left(n \pi+m_{1}\right) \tan m_{1}=1 \\
& \left(1+\frac{m_{1}}{n \pi}\right) \tan m_{1}=\frac{1}{n \pi}
\end{aligned}
$$

So to leading order in n

$$
\tan m_{1}=\frac{1}{n \pi}
$$

As $n \rightarrow+\infty, m_{1} \approx \tan m_{1}$ as m_{1} is small $\Rightarrow m_{1} \approx \frac{1}{n \pi}$
Therefore $\mu_{n} \sim n \pi+\frac{1}{n \pi}+o\left(\frac{1}{n \pi}\right)$.

