## Question

Solve the equation

$$
y^{\prime \prime}+(1-\varepsilon x) y=0, y(0)=1, y^{\prime}(0)=0, \varepsilon \rightarrow 0^{+}
$$

by regular perturbation theory up to order $\varepsilon$. By consideration of the relative size of the terms in the expansion, show that the regular perturbation ceases to be an accurate approximation for large value of $x$ such that $x=O\left(\varepsilon^{-\frac{1}{2}}\right)$. Show by substitution that when $x=O\left(\varepsilon^{-\frac{1}{2}}\right)$, the solution then behaves like $y(x)=\cos \left(x-\frac{\varepsilon x^{2}}{4}\right)+O\left(\varepsilon^{-\frac{1}{2}}\right)$. Deduce that the solution cannot be regular over the full range of $0<x<+\infty$ as $\varepsilon \rightarrow 0^{+}$.

## Answer

$y^{\prime \prime}+(1-\varepsilon x) y=0 ; y(0)=1, y^{\prime}(0)=0 \quad \varepsilon \rightarrow 0^{+}$
$\operatorname{Try} y(x ; \varepsilon)=y_{0}(x)+\varepsilon y_{1}(x)+O\left(\varepsilon^{2}\right)$
Therefore $y_{0}{ }^{\prime \prime}+\varepsilon y_{1}{ }^{\prime \prime}+(1-\varepsilon x)\left(y_{0}+\varepsilon y_{1}\right)+O\left(\varepsilon^{2}\right)=0$
$\underline{O\left(\varepsilon^{0}\right)}: y_{0}^{\prime \prime}+y_{0}=0 \Rightarrow y_{0}=A \sin x+B \cos x$
Boundary conditions $\Rightarrow \begin{aligned} & 1=A \cdot 0+B \quad \Rightarrow \quad B=1 \\ & 0=A \cdot 1+B \cdot 0 \Rightarrow A=0\end{aligned}$
Therefore $y_{0}=\cos x$
$\underline{O\left(\varepsilon^{1}\right)}: y_{1}^{\prime \prime}+y_{1}-x y_{0}=0 \Rightarrow y_{1}^{\prime \prime}+y_{1}=x \cos x$
$\overline{y=C} F+P I$
$y_{C F}=C \cos x+D \sin x$
$\underline{\text { TRY }} y_{P I}=\left(\alpha^{2}+\beta x\right) \cos x+\left(\phi x^{2}+\gamma x\right) \sin x$
Substitution of $y_{P I}$ in equation gives

$$
2 \alpha \cos x-2(2 \alpha x+\beta) \sin x+2 \phi \sin x+2(2 \phi x+\gamma) \cos x=x \cos x
$$

Comparison of like terms gives

$$
\alpha=0, \beta=\frac{1}{4}, \phi=\frac{1}{4}, \gamma=0
$$

so $y_{P I}=\frac{1}{4} x \cos x+\frac{1}{4} x^{2} \sin x$
Therefore $y=C \cos x+\frac{1}{4} x \cos x+\frac{1}{4} x^{2} \sin x$.
Use boundary conditions to find $C$ and $D$ :
$\left\{\begin{array}{ll}y_{1}(0)=0: & 0=C \\ \underbrace{y_{1}^{\prime}(0)=0}: & 0=\frac{1}{4}+D\end{array}\right\} \Rightarrow y_{1}=\frac{1}{4} x^{2} \sin x+\frac{1}{4} x \cos x-\frac{1}{4} \sin x$
from perturbation of boundary conditions $y^{\prime}(0)=0$.

Thus $y=\cos x+\varepsilon\left[\frac{1}{4} x^{2} \sin x+\frac{1}{4} x \cos x-\frac{1}{4} \sin x\right]+O\left(\varepsilon^{2}\right)$
Clearly when $\varepsilon x^{2}=O(1)$ the $\frac{\varepsilon x^{2}}{4} \sin x$ term amplitude has grown to be the same size as the $\cos x$, initial term. Thus the oscillations from the "small" $\varepsilon$ correction are of the same size as the leading order behaviour. Hence the perturbation series breaks down here, i.e., where $x=O\left(\varepsilon^{-\frac{1}{2}}\right)$. Therefore it can't be regular over $0<x<+\infty$.
Given $y=\cos \left(x-\frac{\varepsilon x^{2}}{4}\right)+O\left(\varepsilon^{\frac{1}{2}}\right)$,
$y^{\prime} \sim-\left(1-\frac{\varepsilon x}{2}\right) \sin \left(x-\frac{\varepsilon x^{2}}{4}\right)$
$y^{\prime \prime} \sim \frac{\varepsilon}{2} \sin \left(x-\frac{\varepsilon x^{2}}{2}\right)-\left(1-\frac{\varepsilon x}{2}\right)^{2} \cos x$ and $y(0)=1, y^{\prime}(0)=0 \Rightarrow y^{\prime \prime}+$ $y(1-\varepsilon y)=O(\varepsilon)$ as $\varepsilon \rightarrow 0$
so leading order uniform expansion.

