Question

Use the method of matching to find the first terms in the outer and inner solutions of

$$
\varepsilon y^{\prime \prime}+y^{\prime}+y=0, y(0)=1, y(1)=1,
$$

given that a boundary layer of width $O(\varepsilon)$ exists near the origin. Hence write down the one-term composite expansion. Compare thus with the exact solution.

Answer

$\varepsilon y^{\prime \prime}+y^{\prime}+y=0, y(0)=1, y(1)=1$
Boundary layer of $O(\varepsilon)$ exists at origin
OUTER $y=y_{0}(x)+\varepsilon y_{1}(x)+O\left(\varepsilon^{2}\right)$
Substitute into equations:

$$
\varepsilon y_{0}+\left(\varepsilon^{2} y_{1}\right)+y_{0}^{\prime}+\varepsilon y_{1}^{\prime}+y_{0}+\varepsilon y_{1}^{\prime}=O\left(\varepsilon^{2}\right)
$$

Balance at
$O\left(\varepsilon^{0}\right):+y_{0}^{\prime}+y_{0}=0 \Rightarrow y_{0}=A e^{-x}$
Boundary condition: $y_{0}(0)=1$ (Note in outer region. Therefore irrelevant), $y_{0}(1)=1$ (Only this one is relevant)
$\Rightarrow y_{0}=e^{-x+1}$
INNER
Given boundary layers is $O(\varepsilon)$.
Use inner variable $X=\frac{x}{\varepsilon}: \partial_{x}=\frac{\partial X}{\partial x} \partial_{X}=\frac{1}{\varepsilon} \partial_{x}$ and set $y(\varepsilon x ; \varepsilon)=Y(X ; \varepsilon)$
Equation becomes:
$\frac{1}{\varepsilon} Y ; ;+\frac{1}{\varepsilon} Y^{\prime}+Y=0, Y(0)=1$
$\stackrel{\varepsilon}{\Rightarrow} Y^{\prime \prime}+Y^{\prime}+\varepsilon Y=0, Y(0)=1$
2nd order equation and only one boundary condition \Rightarrow matching is needed.
Try regular ansatz: $Y(X ; \varepsilon)=Y_{0}(X)+\varepsilon Y_{1}(X)+\varepsilon^{2} Y_{2}(X)+O\left(\varepsilon^{3}\right)$
$\Rightarrow Y_{0}^{\prime \prime}+\varepsilon Y_{1}^{\prime \prime}+Y_{0}^{\prime}-\varepsilon Y_{1}^{\prime}+\varepsilon Y_{0}+\left(\varepsilon^{2} Y_{1}\right)=O\left(\varepsilon^{2}\right)$

$$
Y_{0}^{\prime \prime}+Y_{0}^{\prime}=0 ; Y_{0}(0)=1
$$

$O\left(\varepsilon^{0}\right): \Rightarrow Y_{o}^{\prime}+Y_{0}=$ const $=A$ say
$\Rightarrow \quad Y_{0}=+A+C e^{-x}$ where A and C are arbitary constants
Use 1 boundary condition $Y_{0}(0)=1 \Rightarrow 1=A+C$,
only one constant can be determined, say $A=1-C$
Therefore $Y_{0}=(1-C)+C e^{-X}$
Match up to get value of C using Van Dyke.

One term outer expansion $=e^{1-x}$
Rewritten in inner variable $=e^{1-\varepsilon X}$
Expanded for small $\varepsilon \quad=e\left(1-\varepsilon x+O\left(\varepsilon^{2}\right)\right)$
One term $O\left(\varepsilon^{0}\right) \quad=e+O(\varepsilon)(\star)$
One term inner expansion $=-(c-1)+c e^{-X}$
Rewritten in outer variable $=-(c-1)+c e^{-\frac{X}{\varepsilon}}$
Expanded for small $\varepsilon \quad=-(c-1)$ +exp. small term in ε (no + ve power series in t)
One term $O\left(\varepsilon^{0}\right) \quad=-c+1(\star \star)$
$(\star) \operatorname{and}(\star \star)$ must be equal:
$\Rightarrow e=-c+1$ or $c=1-e$
Therefore outer 1-term is: $y(x ; \varepsilon)=e^{1-x}+O(\varepsilon)$
Inner 1-term is $Y(X ; \varepsilon)=e+(1-e) e^{-X}$
Composite is:

$$
\begin{aligned}
y^{\text {comp }} & =y^{\text {outer }}+y^{\text {inner }}-\text { outer limit of } y^{\text {inner }} \text { or inner limit of } y^{\text {outer }} \\
& =e^{1-x}+e+(1-e) e^{-X}-e \quad(+O(\varepsilon)) \\
& =e^{1-x}+(1-e) e^{-X}+\cdots \\
& =e^{1-x}+(1-e) e^{-\frac{x}{\varepsilon}}+\cdots, \varepsilon \rightarrow o^{+}
\end{aligned}
$$

Exact solution is given by substituting $y=A e^{k x}$
$\Rightarrow \varepsilon k^{2}+k+1=0 \Rightarrow k=\frac{-1 \pm \sqrt{1-4 \varepsilon}}{2 \varepsilon}$
General solution is $y=A e_{k_{1}}^{\left(\frac{-1+\sqrt{1-4 \varepsilon}}{2 \varepsilon}\right)} x+B e \underbrace{\left(\frac{-1-\sqrt{1-4 \varepsilon}}{2 \varepsilon}\right)}_{k_{2}} x$
$y(0)=1 \Rightarrow A+B=1$
$y(1)=1 \Rightarrow A e^{k_{1}}+B e^{k_{2}}=1$
so $A=\left(\frac{e^{k_{2}}-1}{e^{k_{2}}-e^{k_{1}}}\right), B=\left(\frac{1-e^{k_{1}}}{e^{k_{2}}-e^{k_{1}}}\right)$ so exact solution is

$$
y=\frac{\left(e^{k_{2}}-1\right) e^{k_{1} x}+\left(1-e^{k_{1}}\right) e^{k_{2} x}}{e^{k_{2}}-e^{k_{1}}}
$$

Small ε expansion gives $k_{1}=-1+O(\varepsilon), k_{2}=-\frac{1}{\varepsilon}+1+O(\varepsilon) \cdot e^{k_{2}}$ is therefore exp. small.

$$
\Rightarrow y \sim+e^{k_{1}(x-1)}+\left(1-e^{-k_{1}}\right) e^{k_{2} x} \sim e^{1-x}+(1-e) e^{-\frac{x}{\varepsilon}} \sqrt{ } \sqrt{ }
$$

