Question

In this question, A is a subset of \mathbf{R}. Define $A^{-}=\{-a \mid a \in A\}$. Show that each of the following holds.

1. if $\sup (A)$ exists, then $\inf \left(A^{-}\right)$exists and $\inf \left(A^{-}\right)=-\sup (A)$;
2. if $\inf (A)$ exists, then $\sup \left(A^{-}\right)$exists and $\sup \left(A^{-}\right)=-\inf (A)$.

Answer

1. Since $\sup (A)$ exists, the set A is bounded above. Let u be any upper bound for A, so that $a \leq u$ for all $a \in A$. Multiplying through by -1 , this becomes $-a \geq-u$ for all $a \in A$. Since $-a$ ranges over all of A^{-}as a ranges over A, this yields that $-u$ is a lower bound for A^{-}, and so $\inf \left(A^{-}\right)$exists. In particular, taking $u=\sup (A)$, we have that $-\sup (A)$ is a lower bound for A^{-}.

To see that there is no lower bound for A^{-}that is greater than $-\sup (A)$, note that t is a lower bound for A^{-}if and only if $-t$ is an upper bound for A. Therefore, a lower bound for A^{-}greater than $-\sup (A)$ exists if and only if an upper bound for A less than $\sup (A)$ exists, but by the definition of supremum no such upper bound can exist. Hence, $-\sup (A)$ is the greatest lower bound for A^{-}, or in other words, $-\sup (A)=\inf \left(A^{-}\right)$, as desired.
2. Since $\inf (A)$ exists, the set A is bounded below. Let t be any lower bound for A, so that $a \geq t$ for all $a \in A$. Multiplying through by -1 , this becomes $-a \leq-t$ for all $a \in A$. Since $-a$ ranges over all of A^{-}as a ranges over A, this yields that $-t$ is an upper bound for A^{-}, and so $\sup \left(A^{-}\right)$exists. In particular, taking $t=\inf (A)$, we have that $-\inf (A)$ is an upper bound for A^{-}.

To see that there is no upper bound for A^{-}that is less than $-\inf (A)$, note that u is an upper bound for A^{-}if and only if $-u$ is a lower bound for A. Therefore, an upper bound for A^{-}less than $-\inf (A)$ exists if and only if a lower bound for A greater than $\inf (A)$ exists, but by the definition of infimum no such lower bound can exist. Hence, $-\inf (A)$ is the least upper bound for A^{-}, or in other words, $-\inf (A)=\sup \left(A^{-}\right)$, as desired.

