Question

In this question, A and B are subsets of \mathbf{R}. Show that each of the following holds.

1. $\inf (A \cup B)=\min (\inf (A), \inf (B))$;
2. if $A \cap B \neq \emptyset$, then $\sup (A \cap B) \leq \min (\sup (A), \sup (B))$;
3. if $A \cap B \neq \emptyset$, then $\inf (A \cap B) \geq \max (\inf (A), \inf (B))$;
4. if u is an upper bound for A and if $u \in A$, then $u=\sup (A)$;
5. if t is an lower bound for A and if $t \in A$, then $t=\inf (A)$;
6. if $\inf (A)$ exists, then $\inf (A)=\sup \{y \mid y$ is a lower bound of A$\}$;
7. if $\sup (A)$ exists, then $\sup (A)=\inf \{y \mid y$ is a upper bound of A$\}$;
8. $\sup (A)$ is unique if it exists;
9. $\inf (A)$ is unique if it exists;

Answer

1. Assume without loss of generality that $\inf (A) \leq \inf (B)$, so that $\min (\inf (A), \inf (B))=$ $\inf (A)$. To show that $\inf (A \cup B)=\inf (A)$, we need to show two things, that $\inf (A)$ is a lower bound for $A \cup B$ and that if t is any lower bound for $A \cup B$, then $t \leq \inf (A)$.

If $a \in A$, then $a \geq \inf (A)$ by definition $(\operatorname{since} \inf (A)$ is less than or equal to every element of A). Similarly, if $b \in B$, then $b \geq \inf (B)$; since $\inf (B) \geq \inf (A)$, this yields that $b \geq \inf (A)$ for all $b \in B$. Since every element c of $A \cup B$ satisfies either $c \in A$ or $c \in B$ (or both), we see that $c \geq \inf (A)$, and so $\inf (A)$ is a lower bound for $A \cup B$.

Let t be any lower bound for $A \cup B$. Since $t \leq c$ for every $c \in A \cup B$, we also have that $t \leq c$ for every $c \in A$. In particular, t is a lower bound for A, and so by the definition of infimum, $t \leq \inf (A)$. Therefore, $\inf (A)$ is a lower bound for $A \cup B$ that is greater than or equal to any other lower bound for $A \cup B$. That is, $\inf (A \cup B)=\inf (A)$.
2. The easiest way to do this is to begin with an intermediate fact: if $A \subset B$ and if $\sup (B)$ exists, then $\sup (A)$ exists and $\sup (A) \leq \sup (B)$. The proof uses the definition of supremum: since $\sup (B)$ exists, we have that $b \leq \sup (B)$ for all $b \in B$ and that if u is an upper bound for
B, then $\sup (B) \leq u$. Since $b \leq \sup (B)$ for all $b \in B$ and since $A \subset B$, we have that $a \leq \sup (B)$ for all $a \in A$. In particular, A is bounded above, and $\operatorname{so} \sup (A)$ exists. To see the second statement, note that since $\sup (B)$ is an upper bound for A, we have that $\sup (A) \leq \sup (B)$ by definition.

So, since $A \cap B \subset A$, we have that $\sup (A \cap B) \leq \sup (A)$. Similarly, $A \cap B \subset B$, and so $\sup (A \cap B) \leq \sup (B)$. Hence, $\sup (A \cap B) \leq$ $\min (\sup (A), \sup (B))$.

To have an example in which $\sup (A \cap B)<\min (\sup (A), \sup (B))$, take $A=\{0,1\}$ and $B=\{0,2\}$. Then, $\sup (A)=1, \sup (B)=2$, and $\sup (A \cap B)=0$ since $A \cap B=\{0\}$.
3. The easiest way to do this is to begin with an intermediate fact: if $A \subset B$ and if $\inf (B)$ exists, then $\inf (A)$ exists and $\inf (A) \geq \inf (B)$. The proof uses the definition of infimum: $\operatorname{since} \inf (B)$ exists, we have that $b \geq \inf (B)$ for all $b \in B$ and that if t is a lower bound for B, then $\inf (B) \geq t$. Since $b \geq \inf (B)$ for all $b \in B$ and since $A \subset B$, we have that $a \geq \inf (B)$ for all $a \in A$. In particular, A is bounded below, and so $\inf (A)$ exists. To see the second statement, note that since $\inf (B)$ is a lower bound for A, we have that $\inf (A) \geq \inf (B)$ by definition.

So, since $A \cap B \subset A$, we have that $\inf (A \cap B) \geq \inf (A)$. Similarly, $A \cap B \subset B$, and so $\inf (A \cap B) \geq \inf (B)$. Hence, $\inf (A \cap B) \geq$ $\max (\inf (A), \inf (B))$.

We note that it is possible to construct an example in which $\inf (A \cap$ $B)>\max (\inf (A), \inf (B))$. Namely, take $A=\{-1,0\}$ and $B=$ $\{-2,0\}$. Then, $\inf (A)=-1, \inf (B)=-2$, and $\inf (A \cap B)=0$ since $A \cap B=\{0\}$.
4. Since u is an upper bound for A, we have that $u \geq \sup (A)$, by the definition of supremum. (And note that $\sup (A)$ exists since A is bounded above.) Since $u \in A$, we also have that $u \leq \sup (A)$. Since $u \geq \sup (A)$ and $u \leq \sup (A)$, it must be that $u=\sup (A)$.
5. Since t is a lower bound for A, we have that $t \leq \inf (A)$, by the definition of infimum. (And note that $\inf (A)$ exists since A is bounded below.) Since $t \in A$, we also have that $t \geq \inf (A)$. Since $t \leq \inf (A)$ and $t \geq \inf (A)$, it must be that $t=\inf (A)$.
6. Set $X=\{y \mid y$ is a lower bound for A $\}$. By definition, $\inf (A) \in X$, since $\inf (A)$ is a lower bound for A. Now take any element y of X, so that y is a lower bound for A. Again by the definition of the infimum, $y \leq \inf (A)$. So, $\inf (A)$ is an upper bound for X and $\inf (A) \in X$, and so $\inf (A)=\sup (X)=\sup \{y \mid y$ is a lower bound for A$\}$. (Note that the assumption that $\inf (A)$ exists is equivalent to the assumption that A is bounded below, which insures that X is non-empty.)
7. Set $X=\{y \mid y$ is an upper bound for A$\}$. By definition, $\sup (A) \in X$, since $\sup (A)$ is an upper bound for A. Now take any element y of X, so that y is an upper bound for A. Again by the definition of the supremum, $y \geq \sup (A)$. So, $\sup (A)$ is a lower bound for X and $\sup (A) \in X$, and $\operatorname{so} \sup (A)=\inf (X)=\inf \{y \mid y$ is an upper bound for A$\}$. (Note that the assumption that $\sup (A)$ exists is equivalent to the assumption that A is bounded above, which insures that X is non-empty.)
8. This one we argue by contradiction. Suppose that a set A has two suprema, and call them x_{1} and x_{2}. Both x_{1} and x_{2} are upper bounds for A, by definition. Since x_{1} is a supremum for A, it is less than or equal to all other upper bounds, and so $x_{1} \leq x_{2}$. Similarly, since x_{2} is a supremum for A, it is less than or equal to all other upper bounds, and so $x_{2} \leq x_{1}$. Since $x_{1} \leq x_{2} \leq x_{1}$, it must be that $x_{1}=x_{2}$, and so the supremum of A is unique. (Note that this exercise justifies why we call it 'the supremum' instead of 'a supremum'.)
9. This one we argue by contradiction. Suppose that a set A has two infima, and call them x_{1} and x_{2}. Both x_{1} and x_{2} are lower bounds for A, by definition. Since x_{1} is an infimum for A, it is greater than or equal to all other lower bounds, and so $x_{1} \geq x_{2}$. Similarly, since x_{2} is an infimum for A, it is greater than or equal to all other upper bounds, and so $x_{2} \geq x_{1}$. Since $x_{1} \geq x_{2} \geq x_{1}$, it must be that $x_{1}=x_{2}$, and so the infimum of A is unique. (Note that this exercise justifies why we call it 'the infimum' instead of 'an infimum'.)

