Question
In this question, A and B are subsets of R. Show that each of the following

holds.
1.
2.
3.

inf(AU B) = min(inf(A), inf(B));
if AN B # (), then sup(A N B) < min(sup(A), sup(B));
if AN B # 0, then inf(AN B) > max(inf(A), inf(B));

4. if w is an upper bound for A and if u € A, then u = sup(A);
5. if ¢ is an lower bound for A and if t € A, then t = inf(A);
6. if inf(A) exists, then inf(A) = sup{y | y is a lower bound of A};
7. if sup(A) exists, then sup(A) = inf{y | y is a upper bound of A};
8. sup(A) is unique if it exists;
9. inf(A) is unique if it exists;
Answer
1. Assume without loss of generality that inf(A) < inf(B), so that min(inf(A),inf(B)) =

inf(A). To show that inf(AU B) = inf(A), we need to show two things,
that inf(A) is a lower bound for AU B and that if ¢ is any lower bound
for AU B, then t <inf(A).

If a € A, then a > inf(A) by definition (since inf(A) is less than or
equal to every element of A). Similarly, if b € B, then b > inf(B); since
inf(B) > inf(A), this yields that b > inf(A) for all b € B. Since every
element ¢ of A U B satisfies either ¢ € A or ¢ € B (or both), we see
that ¢ > inf(A), and so inf(A) is a lower bound for AU B.

Let t be any lower bound for AU B. Since t < ¢ for every ¢ € AUB, we
also have that ¢t < ¢ for every ¢ € A. In particular, t is a lower bound
for A, and so by the definition of infimum, ¢ < inf(A). Therefore,
inf(A) is a lower bound for AU B that is greater than or equal to any
other lower bound for AU B. That is, inf(A U B) = inf(A).

. The easiest way to do this is to begin with an intermediate fact: if

A C B and if sup(B) exists, then sup(A) exists and sup(A) < sup(B).
The proof uses the definition of supremum: since sup(B) exists, we
have that b < sup(B) for all b € B and that if u is an upper bound for
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B, then sup(B) < u. Since b < sup(B) for all b € B and since A C B,
we have that a < sup(B) for all a € A. In particular, A is bounded
above, and so sup(A) exists. To see the second statement, note that
since sup(B) is an upper bound for A, we have that sup(A4) < sup(B)
by definition.

So, since AN B C A, we have that sup(A N B) < sup(A). Similarly,
AN B C B, and so sup(A N B) < sup(B). Hence, sup(A N B) <
min(sup(A), sup(B)).

To have an example in which sup(AN B) < min(sup(A),sup(B)), take
A = {0,1} and B = {0,2}. Then, sup(A) = 1, sup(B) = 2, and
sup(A N B) = 0 since AN B = {0}.

. The easiest way to do this is to begin with an intermediate fact: if
A C B and if inf(B) exists, then inf(A) exists and inf(A) > inf(B).
The proof uses the definition of infimum: since inf(B) exists, we have
that b > inf(B) for all b € B and that if ¢ is a lower bound for B, then
inf(B) > t. Since b > inf(B) for all b € B and since A C B, we have
that a > inf(B) for all a € A. In particular, A is bounded below, and
so inf(A) exists. To see the second statement, note that since inf(B) is
a lower bound for A, we have that inf(A) > inf(B) by definition.

So, since AN B C A, we have that inf(A N B) > inf(A). Similarly,
AN B C B, and so inf(AN B) > inf(B). Hence, inf(AN B) >
max(inf(A),inf(B)).

We note that it is possible to construct an example in which inf(A N
B) > max(inf(A),inf(B)). Namely, take A = {—1,0} and B =
{=2,0}. Then, inf(A) = —1, inf(B) = —2, and inf(A N B) = 0 since
AN B = {0}.

. Since u is an upper bound for A, we have that u > sup(A), by the def-
inition of supremum. (And note that sup(A) exists since A is bounded
above.) Since u € A, we also have that u < sup(A). Since u > sup(A)
and u < sup(A), it must be that u = sup(A).

. Since t is a lower bound for A, we have that ¢ < inf(A), by the definition
of infimum. (And note that inf(A) exists since A is bounded below.)
Since t € A, we also have that ¢ > inf(A). Since ¢t < inf(A) and
t > inf(A), it must be that ¢ = inf(A).



6. Set X = {y |y is a lower bound for A}. By definition, inf(4) € X,
since inf(A) is a lower bound for A. Now take any element y of X, so
that y is a lower bound for A. Again by the definition of the infimum,
y < inf(A). So, inf(A) is an upper bound for X and inf(A) € X, and
so inf(A) = sup(X) = sup{y | y is a lower bound for A}. (Note that
the assumption that inf(A) exists is equivalent to the assumption that
A is bounded below, which insures that X is non-empty.)

7. Set X = {y |y is an upper bound for A}. By definition, sup(A) € X,
since sup(A) is an upper bound for A. Now take any element y of X,
so that y is an upper bound for A. Again by the definition of the supre-
mum, y > sup(A). So, sup(A) is a lower bound for X and sup(A) € X,
and so sup(A) = inf(X) = inf{y | y is an upper bound for A}. (Note
that the assumption that sup(A) exists is equivalent to the assumption
that A is bounded above, which insures that X is non-empty.)

8. This one we argue by contradiction. Suppose that a set A has two
suprema, and call them x; and x,. Both z; and x5 are upper bounds
for A, by definition. Since z; is a supremum for A, it is less than or
equal to all other upper bounds, and so z; < x5. Similarly, since x5 is
a supremum for A, it is less than or equal to all other upper bounds,
and so x9 < x1. Since 1 < x9 < x1, it must be that z; = x5, and so
the supremum of A is unique. (Note that this exercise justifies why we
call it "the supremum’ instead of "a supremum’.)

9. This one we argue by contradiction. Suppose that a set A has two
infima, and call them x; and x,. Both z; and x5 are lower bounds for
A, by definition. Since z; is an infimum for A, it is greater than or
equal to all other lower bounds, and so x; > x5. Similarly, since x5 is
an infimum for A, it is greater than or equal to all other upper bounds,
and so w9 > x1. Since x; > x9 > x1, it must be that z; = x5, and so
the infimum of A is unique. (Note that this exercise justifies why we
call it 'the infimum’ instead of ’an infimum’.)



