
Question

In this question, A and B are subsets of R. Show that each of the following
holds.

1. inf(A ∪B) = min(inf(A), inf(B));

2. if A ∩B 6= ∅, then sup(A ∩B) ≤ min(sup(A), sup(B));

3. if A ∩B 6= ∅, then inf(A ∩B) ≥ max(inf(A), inf(B));

4. if u is an upper bound for A and if u ∈ A, then u = sup(A);

5. if t is an lower bound for A and if t ∈ A, then t = inf(A);

6. if inf(A) exists, then inf(A) = sup{y | y is a lower bound of A};

7. if sup(A) exists, then sup(A) = inf{y | y is a upper bound of A};

8. sup(A) is unique if it exists;

9. inf(A) is unique if it exists;

Answer

1. Assume without loss of generality that inf(A) ≤ inf(B), so that min(inf(A), inf(B)) =
inf(A). To show that inf(A∪B) = inf(A), we need to show two things,
that inf(A) is a lower bound for A∪B and that if t is any lower bound
for A ∪B, then t ≤ inf(A).

If a ∈ A, then a ≥ inf(A) by definition (since inf(A) is less than or
equal to every element of A). Similarly, if b ∈ B, then b ≥ inf(B); since
inf(B) ≥ inf(A), this yields that b ≥ inf(A) for all b ∈ B. Since every
element c of A ∪ B satisfies either c ∈ A or c ∈ B (or both), we see
that c ≥ inf(A), and so inf(A) is a lower bound for A ∪B.

Let t be any lower bound for A∪B. Since t ≤ c for every c ∈ A∪B, we
also have that t ≤ c for every c ∈ A. In particular, t is a lower bound
for A, and so by the definition of infimum, t ≤ inf(A). Therefore,
inf(A) is a lower bound for A ∪B that is greater than or equal to any
other lower bound for A ∪B. That is, inf(A ∪B) = inf(A).

2. The easiest way to do this is to begin with an intermediate fact: if
A ⊂ B and if sup(B) exists, then sup(A) exists and sup(A) ≤ sup(B).
The proof uses the definition of supremum: since sup(B) exists, we
have that b ≤ sup(B) for all b ∈ B and that if u is an upper bound for
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B, then sup(B) ≤ u. Since b ≤ sup(B) for all b ∈ B and since A ⊂ B,
we have that a ≤ sup(B) for all a ∈ A. In particular, A is bounded
above, and so sup(A) exists. To see the second statement, note that
since sup(B) is an upper bound for A, we have that sup(A) ≤ sup(B)
by definition.

So, since A ∩ B ⊂ A, we have that sup(A ∩ B) ≤ sup(A). Similarly,
A ∩ B ⊂ B, and so sup(A ∩ B) ≤ sup(B). Hence, sup(A ∩ B) ≤
min(sup(A), sup(B)).

To have an example in which sup(A∩B) < min(sup(A), sup(B)), take
A = {0, 1} and B = {0, 2}. Then, sup(A) = 1, sup(B) = 2, and
sup(A ∩B) = 0 since A ∩B = {0}.

3. The easiest way to do this is to begin with an intermediate fact: if
A ⊂ B and if inf(B) exists, then inf(A) exists and inf(A) ≥ inf(B).
The proof uses the definition of infimum: since inf(B) exists, we have
that b ≥ inf(B) for all b ∈ B and that if t is a lower bound for B, then
inf(B) ≥ t. Since b ≥ inf(B) for all b ∈ B and since A ⊂ B, we have
that a ≥ inf(B) for all a ∈ A. In particular, A is bounded below, and
so inf(A) exists. To see the second statement, note that since inf(B) is
a lower bound for A, we have that inf(A) ≥ inf(B) by definition.

So, since A ∩ B ⊂ A, we have that inf(A ∩ B) ≥ inf(A). Similarly,
A ∩ B ⊂ B, and so inf(A ∩ B) ≥ inf(B). Hence, inf(A ∩ B) ≥
max(inf(A), inf(B)).

We note that it is possible to construct an example in which inf(A ∩
B) > max(inf(A), inf(B)). Namely, take A = {−1, 0} and B =
{−2, 0}. Then, inf(A) = −1, inf(B) = −2, and inf(A ∩ B) = 0 since
A ∩B = {0}.

4. Since u is an upper bound for A, we have that u ≥ sup(A), by the def-
inition of supremum. (And note that sup(A) exists since A is bounded
above.) Since u ∈ A, we also have that u ≤ sup(A). Since u ≥ sup(A)
and u ≤ sup(A), it must be that u = sup(A).

5. Since t is a lower bound for A, we have that t ≤ inf(A), by the definition
of infimum. (And note that inf(A) exists since A is bounded below.)
Since t ∈ A, we also have that t ≥ inf(A). Since t ≤ inf(A) and
t ≥ inf(A), it must be that t = inf(A).
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6. Set X = {y | y is a lower bound for A}. By definition, inf(A) ∈ X,
since inf(A) is a lower bound for A. Now take any element y of X, so
that y is a lower bound for A. Again by the definition of the infimum,
y ≤ inf(A). So, inf(A) is an upper bound for X and inf(A) ∈ X, and
so inf(A) = sup(X) = sup{y | y is a lower bound for A}. (Note that
the assumption that inf(A) exists is equivalent to the assumption that
A is bounded below, which insures that X is non-empty.)

7. Set X = {y | y is an upper bound for A}. By definition, sup(A) ∈ X,
since sup(A) is an upper bound for A. Now take any element y of X,
so that y is an upper bound for A. Again by the definition of the supre-
mum, y ≥ sup(A). So, sup(A) is a lower bound for X and sup(A) ∈ X,
and so sup(A) = inf(X) = inf{y | y is an upper bound for A}. (Note
that the assumption that sup(A) exists is equivalent to the assumption
that A is bounded above, which insures that X is non-empty.)

8. This one we argue by contradiction. Suppose that a set A has two
suprema, and call them x1 and x2. Both x1 and x2 are upper bounds
for A, by definition. Since x1 is a supremum for A, it is less than or
equal to all other upper bounds, and so x1 ≤ x2. Similarly, since x2 is
a supremum for A, it is less than or equal to all other upper bounds,
and so x2 ≤ x1. Since x1 ≤ x2 ≤ x1, it must be that x1 = x2, and so
the supremum of A is unique. (Note that this exercise justifies why we
call it ’the supremum’ instead of ’a supremum’.)

9. This one we argue by contradiction. Suppose that a set A has two
infima, and call them x1 and x2. Both x1 and x2 are lower bounds for
A, by definition. Since x1 is an infimum for A, it is greater than or
equal to all other lower bounds, and so x1 ≥ x2. Similarly, since x2 is
an infimum for A, it is greater than or equal to all other upper bounds,
and so x2 ≥ x1. Since x1 ≥ x2 ≥ x1, it must be that x1 = x2, and so
the infimum of A is unique. (Note that this exercise justifies why we
call it ’the infimum’ instead of ’an infimum’.)
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