Ordinary Differential Equations Classification

Question

Show that $y=x$ is a solution of $y^{\prime \prime}+y=x$.
Find a solution y to satisfy $y(\pi)=1$ and $y^{\prime}(\pi)=0$.
Answer
If $y=y_{1}(x)=x$ then this will give $y_{1}^{\prime}=1$ and $y_{1}^{\prime \prime}=0$. Thus

$$
y_{1}^{\prime \prime}+y_{1}=0+x .
$$

$y_{2}=A \cos x+B \sin x$ is a solution of $y^{\prime \prime}+y=0$ and so

$$
y=y_{1}(x)+y_{2}(x)=x+A \cos x+B \sin x
$$

is also a solution.
The solution will satisfy

$$
\begin{aligned}
& 1=y(\pi)=\pi-A \\
& 0=y^{\prime}(\pi)=1-B
\end{aligned}
$$

if A and B take the values

$$
\begin{aligned}
& A=\pi-1 \\
& B=1
\end{aligned}
$$

So the solution is

$$
y=x+(\pi-1) \cos x+\sin x
$$

