Ordinary Differential Equations Classification

Question

Show that $y=-e$ is a solution of $y^{\prime \prime}-y=e$.
Find a solution y to satisfy $y(1)=0$ and $y^{\prime}(1)=1$.
Answer
If $y=y_{1}(x)=-e$ then this will give $y_{1}^{\prime}=0$ and $y_{1}^{\prime \prime}=0$. Thus

$$
y_{1}^{\prime \prime}-y_{1}=0+e=e .
$$

$y_{2}=A e^{x}+B e^{-x}$ is a solution of $y^{\prime \prime}-y=0$ and so

$$
y=y_{1}(x)+y_{2}(x)=-e+A e^{x}+B e^{-x}
$$

is also a solution.
The solution will satisfy

$$
\begin{aligned}
& 0=y(1)=A e+\frac{B}{e}-e \\
& 1=y^{\prime}(1)=A e-\frac{B}{e}
\end{aligned}
$$

if A and B take the values

$$
\begin{aligned}
& A=(e+1) /(2 e) \\
& B=e(e-1) / 2
\end{aligned}
$$

So the solution is

$$
y=-e+\frac{1}{2}(e+1) e^{x-1}+\frac{1}{2}(e-1) e^{1-x}
$$

