Question

State which of the following PDEs are elliptic, which are hyperbolic and which are parabolic. Try to find the equations of the characteristics where these are real.
(a) $u_{x x}+3 u_{x y}+u_{y y}=2 u+x^{2} y^{2}$
(b) $y u_{x x}+(x+y) u_{x y}+x u_{y y}=0$
(c) $x^{2} u_{x x}-y^{2} u_{y y}=x y$
(d) $r^{2} u_{r r}+u_{\theta \theta}$
(e) $\nabla \cdot[F(r) \nabla \phi]$
(f) $x(\pi-x) u_{x x}+x u_{x}+u_{t}=0$

Answer

(a) This is an inhomogeneous type with d of th electure notes given as $d=2 u+x^{2}-y^{2}$.

However a, b, c are given by
$a=1, b=\frac{3}{2}, c=1 \Rightarrow$ hyperbolic everywhere
Characteristics are given by constant coefficient results,

$$
\left\{\begin{array}{l}
\xi=y+\left[\frac{-3+\sqrt{5}}{2}\right] x \\
\eta=y+\left(\frac{-3-\sqrt{5}}{2}\right) x
\end{array}\right.
$$

or

$$
\left\{\begin{array}{l}
y=\left(\frac{3-\sqrt{5}}{2}\right) x+\text { const } \\
y=\left(\frac{3+\sqrt{5}}{2}\right) x+\text { const }
\end{array}\right.
$$

Note we can solve the homogeneous equation simply as

$$
u_{\text {homogeneous }}(x, y)=p(\xi)+q(\eta)
$$

with ξ, η above, but complete solution is:

$$
u=u_{\text {homogeneous }}+u_{\text {particular integral }}
$$

(b) $a=y, b=\frac{(x+y)}{2}, c=x$

$$
b^{2}-a c=\frac{(x+y)^{2}}{4}-y x=\left(\frac{x-y}{2}\right)^{2} \geq 0
$$

So hyperbolic except where $x=y$ where it's parabolic.
For $y \neq x$ characteristics are given by:

$$
\begin{aligned}
& \quad a d x^{2}+2 b d x d y+c d y^{2}=0 \\
& \Rightarrow y d x^{2}+(x+y) d x d y+x d y^{2}=0 \\
& \Rightarrow
\end{aligned}
$$

$$
\begin{aligned}
\frac{d y}{d x} & =\frac{b \pm \sqrt{b^{2}-a c}}{a} \\
& =\frac{(x+y)}{2 y} \pm \frac{\sqrt{(x-y)^{2}}}{2 y} \\
& =\frac{1}{2 y}[x+y \pm(x-y)] \\
& =\frac{x}{y} \text { or } \underline{1}
\end{aligned}
$$

Therefore $\frac{d y}{d x}=1$ or $\frac{d y}{d x}=\frac{x}{y}$
$\Rightarrow y=x+$ const or $y^{2}-x^{2}=$ const
PICTURE

Note that the two families of characteristics become parallel on $\underline{y=x}$ where equation is parabolic.
(c) $a=x^{2}, b=0, c=-y^{2}$, inhomogeneous
$b^{2}-a c=0+x^{2} y^{2}>0$ for all $x \neq 0, y \neq 0$
Characteristics are:

$$
\begin{aligned}
& \qquad \frac{d y}{d x}=\frac{b \pm \sqrt{b^{2}-a c}}{a}= \pm \frac{x y}{x^{2}}= \pm \frac{y}{x} \\
& \Rightarrow \frac{d y}{d x}=\frac{y}{x}, \frac{d y}{d x}=-\frac{y}{x} \\
& \Rightarrow \ln y=\ln k x, \ln y=-\ln (x \bar{k}) \\
& \Rightarrow y=k x, \quad \frac{\bar{k}}{x} \text { where } k \text { and } \overline{\bar{k}} \text { are constants }
\end{aligned}
$$

PICTURE
parallel when $y=0$ or $x=0$ i.e., when parabolic
(d) $r^{2} u_{r r}+u_{\theta \theta}=" a " u_{r}$

The "d" is irrelevant to classification
$a=r^{2}, b=0, c=1$
$b^{2}-a c=-r^{2} \leq 0 \rightarrow$ elliptic $r \neq 0$, parabolic $r=0$
No real characteristics for elliptic case
Parabolic case: $\frac{d r}{d \theta}=0 \Rightarrow \underline{r=\text { const }}$
(e)

$$
\begin{aligned}
\nabla \cdot[F(\mathbf{r}) \nabla \phi] & =f(\mathbf{r}) \nabla^{2} \phi \\
& =F(\mathbf{r})\left(\phi_{x x}+\phi_{y y}\right)
\end{aligned}
$$

so if $F(\mathbf{r})\left(\phi_{x x}+\phi_{y y}\right)=0$ it's elliptic everywhere except where $F(\mathbf{r})=0$
$\left(a=F(\mathbf{r}), b=0, c=F(\mathbf{r}), b^{2}-a c=-F(\mathbf{r})^{2}<0\right)$
(f) $a=x(\pi-x), b=0, c=0$
(only second order derivatives count)
so $b^{2}-a c=0$ for all x, t
Thus parabolic with $\frac{d t}{d x}=0 \Rightarrow t=$ const

