Question

State which of the following PDEs are elliptic, which are hyperbolic and which are parabolic. Try to find the equations of the characteristics where these are real.

- (a) $u_{xx} + 3u_{xy} + u_{yy} = 2u + x^2y^2$
- (b) $yu_{xx} + (x+y)u_{xy} + xu_{yy} = 0$
- (c) $x^2 u_{xx} y^2 u_{yy} = xy$
- (d) $r^2 u_{rr} + u_{\theta\theta}$
- (e) $\bigtriangledown \cdot [F(r) \bigtriangledown \phi]$
- (f) $x(\pi x)u_{xx} + xu_x + u_t = 0$

Answer

(a) This is an inhomogeneous type with d of th electure notes given as $d = 2u + x^2 - y^2$.

However a, b, c are given by $a = 1, \ b = \frac{3}{2}, \ c = 1 \Rightarrow$ hyperbolic everywhere

Characteristics are given by constant coefficient results,

$$\begin{cases} \xi = y + \left[\frac{-3 + \sqrt{5}}{2}\right] x\\ \eta = y + \left(\frac{-3 - \sqrt{5}}{2}\right) x\end{cases}$$

or

$$\begin{cases} y = \left(\frac{3-\sqrt{5}}{2}\right)x + const\\ y = \left(\frac{3+\sqrt{5}}{2}\right)x + const \end{cases}$$

Note we can solve the homogeneous equation simply as

$$u_{homogeneous}(x,y) = p(\xi) + q(\eta)$$

with ξ , η above, but complete solution is:

 $u = u_{homogeneous} + u_{particular integral}$

(b)
$$a = y, \ b = \frac{(x+y)}{2}, \ c = x$$

 $b^2 - ac = \frac{(x+y)^2}{4} - yx = \left(\frac{x-y}{2}\right)^2 \ge 0$

So hyperbolic except where x = y where it's parabolic. For $y \neq x$ characteristics are given by:

$$adx^{2} + 2b \, dx \, dy + cdy^{2} = 0$$

$$\Rightarrow y \, dx^{2} + (x + y) \, dx \, dy + xdy^{2} = 0$$

$$\Rightarrow$$

$$\frac{dy}{dx} = \frac{b \pm \sqrt{b^2 - ac}}{a}$$
$$= \frac{(x+y)}{2y} \pm \frac{\sqrt{(x-y)^2}}{2y}$$
$$= \frac{1}{2y} [x+y \pm (x-y)]$$
$$= \frac{x}{y} \text{ or } \underline{1}$$

Therefore $\frac{dy}{dx} = 1$ or $\frac{dy}{dx} = \frac{x}{y}$ $\Rightarrow y = x + const$ or $y^2 - x^2 = const$ PICTURE Note that the two families of characteristics become parallel on $\underline{y} = x$ where equation is parabolic.

(c) $a = x^2$, b = 0, $c = -y^2$, inhomogeneous $b^2 - ac = 0 + x^2y^2 > 0$ for all $x \neq 0$, $y \neq 0$

Characteristics are:

$$\frac{dy}{dx} = \frac{b \pm \sqrt{b^2 - ac}}{a} = \pm \frac{xy}{x^2} = \pm \frac{y}{x}$$
$$\Rightarrow \frac{dy}{dx} = \frac{y}{x}, \ \frac{dy}{dx} = -\frac{y}{x}$$
$$\Rightarrow \ln y = \ln kx, \ \ln y = -\ln(x\bar{k})$$
$$\Rightarrow y = kx, \ \frac{\bar{k}}{x} \text{ where } k \text{ and } \bar{k} \text{ are constants}$$
PICTURE

parallel when y = 0 or x = 0 i.e., when parabolic

(d) $r^2 u_{rr} + u_{\theta\theta} = a^{"} u_r$

The "d" is irrelevant to classification

 $a = r^2, \ b = 0, \ c = 1$ $b^2 - ac = -r^2 \le 0 \rightarrow \text{elliptic } r \ne 0, \text{ parabolic } r = 0$ No real characteristics for elliptic case Parabolic case: $\frac{dr}{d\theta} = 0 \Rightarrow \underline{r = const}$

$$\nabla \cdot [F(\mathbf{r}) \nabla \phi] = f(\mathbf{r}) \nabla^2 \phi$$
$$= F(\mathbf{r})(\phi_{xx} + \phi_{yy})$$

so if $F(\mathbf{r})(\phi_{xx} + \phi_{yy}) = 0$ it's elliptic everywhere except where $F(\mathbf{r}) = 0$ $(a = F(\mathbf{r}), b = 0, c = F(\mathbf{r}), b^2 - ac = -F(\mathbf{r})^2 < 0)$

(f) $a = x(\pi - x), b = 0, c = 0$

(only second order derivatives count)

so $b^2 - ac = 0$ for all x, tThus parabolic with $\frac{dt}{dx} = 0 \Rightarrow t = const$