Question

Find and sketch the characteristic curves for

$$
2 u_{x x}-5 u_{x x}+2 u_{y y}+u_{x}-3 u=0
$$

For what values of α does it have a unique solution satisfying the conditions

$$
u(\cos \theta, \sin \theta)=\theta, u_{x}(\cos \theta, \sin \theta)=0 \text { for } 0<\theta<\alpha ?
$$

Answer

1st order derivatives are irrelevant for classification.
Thus:
$a=2, b=-\frac{5}{2}, c=2$
$b^{2}-a c=\left(\frac{5}{2}\right)^{2}-4=\frac{9}{4}>0$ Therefore hyperbolic everywhere
Characteristic equations given by:

$$
\frac{D y}{d x}=\frac{0 \frac{5}{2} \pm \sqrt{\frac{9}{4}}}{2}=\frac{1}{2}\left(-\frac{5}{2} \pm \frac{3}{2}\right)=-\frac{1}{2} \text { or }-2
$$

so characteristics or $\begin{cases}y & =-\frac{1}{2}+\text { const } \\ y & =-2 x+\text { const }\end{cases}$
i.e., 2 sets of straight lines

PICTURE

Now we're given boundary conditions as:
$u(\cos \theta, \sin \theta)=\theta, u_{x}(\cos \theta, \sin \theta)=0$ for $0<\theta<2 \pi$
i.e., on an arc of a circle of radius 1 .

Now remember the example of lectures where characteristics carried information from the curve on which boundary conditions are given into the domain of a solution.
Draw first the boundary condition curve. Then superimpose a grid given by the characteristics.
PICTURE

Now consider the point B. This is where $y=-2 x+$ const is first tangential to the circle.
Any point on the circle between A and B, P_{1}, say, has two characteristics passing through it and into the range of influence. However these characteristics given by $y=-2 x+$ const can be seen to encounter the circle at another point in the first quadrant, P_{2}, say. If we think of characteristics as propagating information from the curve in which the boundary condition is defined into the range of influence (cf. lecture example), then we have a possible conflict at this second intersection point.
PICTURE

In other words the information propagated from the boundary condition at P_{1} may be different from the information given by the boundary condition at P_{2}.
The only way we can be sure things will work out is if we only define the boundary conditions up to \underline{B} (which turns out to be $\left(\frac{2}{\sqrt{5}}, \frac{1}{\sqrt{5}}\right)$. Thus we have a domain of dependence.

PICTURE

Thus $\alpha=\angle A O B=\tan ^{-1}\left(\frac{1}{2}\right)$.

