Question

Consider the two circles

$$
A_{1}=\{z \in \mathbf{C}| | z-(2+2 i) \mid=4\}
$$

and

$$
A_{2}=\{z \in \mathbf{C}| | z-2 \mid=3\} .
$$

Find the points of intersection of these two circles, and determine the angles between the two circles by determining the angle between their tangent lines at one of the points of intersection, call it ξ. (Which point of intersection you use is your choice.)
Consider now the Möbius transformation $m(z)=\frac{z}{z+1}$. Determine the equations of the image circles $m\left(A_{1}\right)$ and $m\left(A_{2}\right)$. Determine the angle between $m\left(A_{1}\right)$ and $m\left(A_{2}\right)$ at $m(\xi)$ by determining the angle between their tangent lines.
Confirm that the angle between A_{1} and A_{2} at ξ is equal to the angle between $m\left(A_{1}\right)$ and $m\left(A_{2}\right)$ at $m(\xi)$.

Answer

Start by determining the intersection points of A_{1} and A_{2} :
A_{1} is given by $|z-(2+2 i)|=4$ which expands out to

$$
z \bar{z}-(2+2 i) \bar{z}-(2-2 i) z-8=0
$$

A_{2} is given by $|z-2|=3$ which expands out to

$$
z \bar{z}-2 \bar{z}-2 z-5=0
$$

$z \bar{z}-(2+2 i) \bar{z}-(2-2 i) z-8=z \bar{z}-2 \bar{z}-2 z-5$
simplifies to $-2 i \bar{z}+2 i z-3=0$ which gives (setting $z=x+i y) y=\frac{-3}{4}$.
Plugging back into either (both) of the equations for the circles $A_{1} A_{2}$ we get $x=2 \pm \frac{\sqrt{135}}{4}$.

So $A_{1} A_{2}$ intersect at $\underline{\left(2 \pm \frac{\sqrt{135}}{4}\right)-\frac{3}{4} i}$
Work at $z_{0}=\left(2 \pm \frac{\sqrt{135}}{4}\right)-\frac{3}{4} i$

The radius of A_{1} passes through z_{0} and $2+2 i$ and so the slope of the radius is $m_{1}=\frac{2-\left(-\frac{3}{4}\right)}{2-\left(2+\frac{\sqrt{135}}{4}\right)}=\frac{\frac{11}{4}}{-\frac{\sqrt{135}}{4}}=\frac{-11}{\sqrt{135}}$

The slope of the tangent line is $M_{1}=\frac{-1}{m_{1}}$ and so the equation of the tangent line is:
$y+\frac{3}{4}=\frac{\sqrt{135}}{11}\left(x-\left(2+\frac{\sqrt{135}}{4}\right)\right)$
$\frac{1}{2 i}(z-\bar{z})+\frac{3}{4}=\frac{\sqrt{135}}{11}\left(\frac{1}{2}(z+\bar{z})-\left(2+\frac{\sqrt{135}}{4}\right)\right)$
$\frac{-i}{2} z+\frac{i}{2} \bar{z}+\frac{3}{4}=\frac{\sqrt{135}}{22} z+\frac{\sqrt{135}}{22} \bar{z}-\frac{\sqrt{135}}{11}\left(2+\frac{\sqrt{135}}{4}\right)$
$0=\left(\frac{\sqrt{135}}{22}+\frac{i}{2}\right) z+\left(\frac{\sqrt{135}}{22}-\frac{i}{2}\right) \bar{z}-\frac{2 \sqrt{135}}{11}-\frac{135}{44}-\frac{3}{4}$
$0=\left(\frac{\sqrt{135}}{22}+\frac{i}{2}\right) z+\left(\frac{\sqrt{135}}{22}-\frac{i}{2}\right) \bar{z}-\frac{(8 \sqrt{135}+168)}{44}$
$0=\beta_{1} z+\bar{\beta}_{1} \bar{z}+\gamma_{1}=0$
Facts to note: the angle that the tangent line to A_{1} at z_{0} makes with \mathbf{R} is $\theta_{1}=\arctan \left(M_{1}\right) \Rightarrow \theta_{1}=0.8128$.
$\beta_{1}=\frac{\sqrt{135}}{22}+\frac{1}{2}$
$\gamma_{1}=-\frac{(8 \sqrt{135}+168)}{44}$
The radius of A_{2} passes through z_{0} and 2 and so the slope of the radius is $m_{2}=\frac{0-\left(-\frac{3}{4}\right)}{2-\left(2+\frac{\sqrt{135}}{4}\right)}=\frac{\frac{3}{4}}{-\frac{\sqrt{135}}{4}}=\frac{-1}{\sqrt{15}}$

The slope of the tangent line is $M_{2}=\frac{-1}{m_{2}}=\sqrt{15}$ and so the equation of the tangent line is:
$y+\frac{3}{4}=\sqrt{15}\left(x-\left(2+\frac{\sqrt{135}}{4}\right)\right)$
$y+\frac{3}{4}=\sqrt{15} x-2 \sqrt{15}-\frac{\sqrt{15} \cdot \sqrt{135}}{4}$
$\frac{-i}{2}(z-\bar{z})+\frac{3}{4}=\sqrt{15}\left(\frac{1}{2}(z+\bar{z})\right)-2 \sqrt{15}-\frac{45}{4}$
$\left(\frac{\sqrt{15}}{2}+\frac{i}{2}\right) z+\left(\frac{\sqrt{15}}{2}-\frac{i}{2}\right) \bar{z}-2 \sqrt{15}-\frac{45}{4}-\frac{3}{4}=0$
$\left(\frac{\sqrt{15}}{2}+\frac{i}{2}\right) z+\left(\frac{\sqrt{15}}{2}-\frac{i}{2}\right) \bar{z}-2 \sqrt{15}-12=0$
$0=\beta_{2} z+\bar{\beta}_{2} \bar{z}+\gamma_{2}=0$
$\beta_{2}=\frac{\sqrt{15}}{2}+\frac{i}{2}, \quad \gamma_{2}=-2 \sqrt{15}-12$
The angle that the tangent line to A_{2} at z_{0} makes with \mathbf{R} is $\theta_{2}=\arctan \left(M_{2}\right) \Rightarrow \theta_{2}=1.3181$.

So, the angle between A_{2} and A_{1} at z_{0} is $\underline{\theta_{2}-\theta_{1}=0.5053}$.
Equation of m (tangent line to A_{k}):
$w=m(z)=\frac{z}{z+1}, \quad z=\frac{w}{1-w}$

$$
\begin{aligned}
0 & =\beta_{k} z+\bar{\beta}_{k} \bar{z}+\gamma_{k}=0 \\
& =\beta_{k} \frac{w}{1-w}+\bar{\beta}_{k} \frac{\bar{w}}{1-\bar{w}}+\gamma_{k} \\
0 & =\beta_{k} w(1-\bar{w})+\bar{\beta}_{k} \bar{w}(1-w)+\gamma_{k}(1-w)(1-\bar{w}) \\
0 & =\beta_{k} w-\beta_{k} w \bar{w}+\bar{\beta}_{k} \bar{w}-\bar{\beta}_{k} w \bar{w}+\gamma_{k}-\gamma_{k} w-\gamma_{k} \bar{w}+\gamma_{k} w \bar{w} \\
0 & =\left(\gamma_{k}-\beta_{k}-\bar{\beta}_{k}\right) w \bar{w}+\left(\beta_{k}-\gamma_{k}\right) w+\left(\bar{\beta}_{k}-\gamma_{k}\right) \bar{w}+\gamma_{k}
\end{aligned}
$$

Center of $m\left(\right.$ tangent line to A_{k} at $\left.z_{0}\right)$:

$$
\begin{gathered}
\frac{\gamma_{k}-\bar{\beta}_{k}}{\gamma_{k}-\beta_{k}-\bar{\beta}_{k}}=\frac{\gamma_{k}-\bar{\beta}_{k}}{\gamma_{k}-2 \operatorname{Re} \beta_{\mathrm{k}}} \\
\begin{aligned}
& \underline{k=1} \gamma_{1}=-\frac{(8 \sqrt{135}+168)}{44}, \beta_{1}=\frac{\sqrt{135}}{22}+\frac{i}{2} \\
& \text { center }=\frac{-(8 \sqrt{135}+168)-2 \sqrt{135}+22 i}{-(8 \sqrt{135}+168)-4 \sqrt{135}} \\
&=\frac{-10 \sqrt{135}-168+22 i}{-12 \sqrt{135}-168} \\
& \sim \frac{0.9244-0.0716 i}{2}
\end{aligned} \\
\underline{k=1} \gamma_{2}=-2 \sqrt{15}-12, \quad \beta_{2}=\frac{\sqrt{15}}{2}+\frac{i}{2}
\end{gathered}
$$

$$
\text { center }=\frac{-2(2 \sqrt{15}+12)-(\sqrt{15}-i)}{-2(2 \sqrt{15}+12)-2 \sqrt{15}}
$$

$$
=\frac{-5 \sqrt{15}-24+i}{-6 \sqrt{15}-24}
$$

$$
\sim \underline{0.9180-0.0212 i}
$$

$$
\begin{aligned}
m\left(z_{0}\right)=\frac{z_{0}}{z_{0}+1} & =\frac{\left(2+\frac{\sqrt{135}}{4}\right)\left(3+\frac{\sqrt{135}}{4}\right)+\frac{9}{16}-\frac{3}{4} i}{\left(3+\frac{\sqrt{135}}{4}\right)^{2}+\frac{9}{10}} \\
& \sim 0.8333-0.0212 i
\end{aligned}
$$

slope of radius of m (tangent line to A_{1}): -0.5532 slope of tangent to m (tangent line to A_{1}): 1.8075
angle of tangent to \mathbf{R} : $\phi_{1}=1.0655$
slope of radius of m (tangent line to A_{1}): ~ 0 slope of tangent to m (tangent line to A_{1}): $\sim \infty$ angle of tangent to \mathbf{R} : $\phi_{2}=1.57-8$
and so the angle between $m\left(A_{2}\right)$ and $m\left(A_{1}\right)$ at z_{0} is

$$
\phi_{2}-\phi_{1}=0.5053
$$

(as desired)

