Question

Determine all the circles in $\overline{\mathbf{C}}$ that are taken to themselves by the Möbius transformation $m(z) = \frac{3z-2}{2z-1}$. (That is, determine all the circles A in $\overline{\mathbf{C}}$ satisfying m(A) = A.)

Answer

First, find the fixed points and the type of m:

$$m(z) = \frac{3z-2}{2z-1} \det(m) = -3+4=1$$
, so m is already normalized. $\underline{\tau}(m) = (3-1)^2 = 4$ and so m is parabolic.

Fixed point:

$$m(z) = z$$

 $2z^2 - z = 3z - 2$
 $2z^2 - 4z + 2 = 0$
 $z^2 - 2z + 1 = 0$
 $(z - 1)^2 = 0$ so $m(1) = 1$

Since the coefficients of m are real, $m(\mathbf{R}) = \mathbf{R}$. If A is a circle in $\bar{\mathbf{C}}$ intersecting \mathbf{R} in two points (1=fixed point of m and z_0), then $m(A) \neq A$ since $m(z_0) \neq z_0$. If A is a circle in $\bar{\mathbf{C}}$ which is tangent to \mathbf{R} at 1, then m(A) = A. So, the circles taken to themselves by m are $\bar{\mathbf{R}}$ and any circle in $\bar{\mathbf{C}}$ tangent to $\bar{\mathbf{R}}$ at 1.