Question

The random pair X and Y has the distribution

		y			
		2	3	4	Total
x	1	$\frac{1}{12}$	$\frac{1}{6}$	0	-
	2	$\frac{1}{6}$	0	$\frac{1}{3}$	-
	3	$\frac{1}{12}$	$\frac{1}{6}$	0	-
		-	-	-	1

(a) Are X and Y independent? Give reasons.
(b) Find the conditional pmf of Y given that $X=2$.

Hence find $E(Y \mid X=2)$.
Answer
The probability table is

			y		
		2	3	4	Total
x	1	$\frac{1}{12}$	$\frac{1}{6}$	0	$\frac{1}{4}$
	2	$\frac{1}{6}$	0	$\frac{1}{3}$	$\frac{1}{2}$
	3	$\frac{1}{12}$	$\frac{1}{6}$	0	$\frac{1}{4}$
		$\frac{1}{3}$	$\frac{1}{3}$	$\frac{1}{3}$	1

(a) Since $P(X=1, Y=4) \neq P(X=1) \cdot P(Y=4) \quad\left(0 \neq \frac{1}{4} \cdot \frac{1}{3}\right)$
X and Y are dependent.
(b) The conditional distribution of $Y \mid X=2$ is

y	$f(y \mid X=2)$	
2	$\frac{1}{6} \div \frac{1}{2}$	$\frac{1}{3}$
3	$0 \div \frac{1}{3}$	0
4	$\frac{1}{3} \div \frac{1}{2}$	$\frac{2}{3}$
$E(Y \mid X=2)=2 \cdot \frac{1}{3}+3 \cdot 0+4 \cdot \frac{2}{3}=\frac{10}{3}$.		

