Question

Suppose that the joint pdf of X and Y is given by $f(x, y)=2 x \quad 0 \leq x \leq 1, \quad 0 \leq y \leq 1$.
(a) Find the conditional distribution of Y given that $X=x$,
(b) Find $P\left(\left.Y \leq \frac{1}{2} \right\rvert\, X=0.5\right)$ and $P\left(\left.Y \leq \frac{1}{2} \right\rvert\, X=0.75\right)$.
(c) Explain your answers from part b.

Answer

$f(x, y)=2 x, \quad 0 \leq x \leq 1 ; \quad 0 \leq y \leq 1$
(a) $f_{X}(x)=\int_{0}^{1} 2 x d y=2 x \int_{0}^{1} d y=2 x, \quad 0 \leq x \leq 1$
$f_{Y}(y)=\int_{0}^{1} 2 x d x=\left.x^{2}\right|_{0} ^{1}=1, \quad 0 \leq y \leq 1$
Therefore $f(y \mid x)=\frac{f(x, y)}{f_{X}(x)}=\frac{2 x}{2 x}=1, \quad 0 \leq y \leq 1$
(b) $P\left(\left.Y \leq \frac{1}{2} \right\rvert\, X=0.5\right)=\int_{0}^{\frac{1}{2}} d y=\frac{1}{2}=\int_{0}^{\frac{1}{2}} f(y \mid x) d y$

$$
P\left(\left.Y \leq \frac{1}{2} \right\rvert\, X=0.75\right)=\int_{0}^{\frac{1}{2}} f(y \mid X=x) d y=\int_{0}^{\frac{1}{2}} d y=\frac{1}{2}
$$

(c) The two probabilities are equal because the distribution of $Y \mid X=x$ does not depend on x since X and Y are independent.

