Question

Suppose that the joint pdf of X and Y is as follows:

$$
f(x, y)= \begin{cases}\frac{15}{4} x^{2} & \text { if } 0 \leq y \leq 1-x^{2} \\ 0 & \text { otherwise }\end{cases}
$$

(a) Determine the marginal pdf's of X and Y. Are X and Y independent?
(b) Find the conditional pdf of Y given that $X=x$.
(c) Find $E(Y \mid X=x)$.

Answer
$f(x, y)=\frac{15}{4} x^{2}, \quad 0 \leq y \leq 1-x^{2}$
(a) First check that its a pdf

$$
\begin{array}{r}
\iint_{0 \leq y \leq 1-x^{2}} \frac{15}{4} x^{2} d y d x \\
=\frac{15}{4} \int_{-1}^{1} x^{2} d x \int_{0}^{1-x^{2}} d y \\
=\frac{15}{4} \int_{-1}^{1} x^{2}\left(1-x^{2}\right) d x=1 \\
f_{X}(x)=\frac{15}{4} x^{2}\left(1-x^{2}\right), \quad-1 \leq x \leq 1 \\
f_{Y}(y)=\frac{15}{4} \int_{-\sqrt{1-y}}^{\sqrt{1-y}} x^{2} d x=\frac{5}{2}(1-y)^{\frac{3}{2}}, \quad 0<y<1
\end{array}
$$

Since

$$
\begin{aligned}
& 1-x^{2} \geq y \\
\Rightarrow & x^{2} \leq 1-y \\
\Rightarrow & -\sqrt{1-y} \leq x \leq \sqrt{1-y}
\end{aligned}
$$

X and Y are not independent.
(b)

$$
\begin{aligned}
& f(y \mid X=x)=\frac{f(x, y)}{f_{X}(x)}=\frac{15}{4} x^{2} \cdot \frac{1}{\frac{15}{4} x^{2}\left(1-x^{2}\right)} \\
&=\frac{1}{1-x^{2}}, \quad 0 \leq y \leq 1-x^{2} . \\
& Y \mid X=x \sim \operatorname{Uniform}\left(0,1-x^{2}\right) \quad \text { where }-1 \leq x \leq 1
\end{aligned}
$$

(c) $E(Y \mid X=x)=\frac{1-x^{2}}{2}$ where $-1 \leq x \leq 1$.

