Question

Find all the solutions of $u_{t}+c u_{x}=0$ where c is a constant which satisfy $u_{t}(x, 0)+k u(x, 0)=\phi(x)$, where k is a constant and ϕ is a given function.

Answer
The general solution of $u_{t}+c u_{x}=0$ is given by:
$\frac{d t}{d \xi}=1, \frac{d x}{d \xi}=c, \frac{d u}{d \xi}=0$
$\frac{d t}{d x}=\stackrel{!}{-c}, u=$ const
$\Rightarrow \frac{d x}{d t}=c, u=\mathrm{const}$
$\Rightarrow x=\alpha+c t, u=\beta \quad($ alpha, bet $a=$ const. $)$
Therefore $\left\{\begin{aligned} x-c t & =\text { const } \\ u & =\text { const }\end{aligned}\right.$
$\Rightarrow u=f(x-c t)$
Therefore boundary condition is satisfied by:

$$
-c f^{\prime}(x)+k f(x)=\phi(x)
$$

(1st order linear: solve with integrating factor $e^{\frac{-k x}{c}}$)
This ODE can be solved to give:

$$
\begin{aligned}
& \left.f^{\prime}(x)-\frac{k}{c} f 9 x\right)=\frac{1}{c} \phi(x) \\
\Rightarrow & e^{\frac{-k x}{c}} f^{\prime}(x)-\frac{k}{c} e^{\frac{-k x}{c}} f(x)=\frac{e^{\frac{-k x}{c}}}{c} \phi(x) \\
\Rightarrow & \frac{d}{d x}\left[e^{\frac{-k x}{c}} f(x)\right]=\frac{e^{\frac{-k x}{c}}}{c} \phi(x) \\
\Rightarrow & e^{\frac{-k x}{c}} f(x)=\frac{1}{c} \int_{a}^{x} d \eta \phi(\eta) e^{\frac{-k x}{c}} \\
\Rightarrow & f(x)=\frac{e^{\frac{-k x}{c}}}{c} \int_{a}^{x} d \eta \phi(\eta) e^{\frac{-k x}{c}}
\end{aligned}
$$

where a is an arbitrary constant.
So the specific solution is:

$$
u(x, t)=\frac{e^{\frac{k(x-c t)}{c}}}{c} \int_{a}^{x-c t} e^{\frac{-k \eta}{c}} \phi(\eta) d \eta
$$

where a is an arbitrary constant.

