Question

Using Lagrange's method, obtain the general solution of $uu_x + u_y = 1$. If u = 0 on $y^2 = 2x$ obtain the solution and state the region in which it is valid.

Answer

Lagrange gives
$$\frac{dx}{d\xi} = u, \ \frac{dy}{d\xi} = 1, \ \frac{du}{d\xi} = 1$$

$$\Rightarrow u = \xi + a, \ y = \xi + b \quad (1)$$

$$\Rightarrow \frac{dx}{d\xi} = \xi + a$$

$$\Rightarrow x = \frac{1}{2}\xi^2 + a\xi + c \quad (2)$$
 where a, b, c are constants Therefore we have $((1))$: $u - y = const \quad (3)$ and $((2))$: $x = \frac{1}{2}(u - a)^2 + a(u - a) - +c$
$$\Rightarrow x = \frac{1}{2}u^2 + const$$

$$\Rightarrow \left(x - \frac{1}{2}u^2\right) = const \quad (4)$$
 Therefore (3) and (4) give general solution
$$f\left(u - y, \ x - \frac{1}{2}u^2\right) = const$$
 Write this as $u - y = g\left(x - \frac{1}{2}u^2\right)$ say. Boundary condition then gives $-\sqrt{2x} = g(x)$, so $g\left(x - \frac{1}{2}u^2\right) = -\sqrt{2x - u^2}$. Thus $u - y = -\sqrt{2x - u^2} \rightarrow u = \frac{y}{2} \pm \left(x - \frac{y^2}{4}\right)^{\frac{1}{2}}$. Since $u = 0$ on $y^2 = 2x$ we need negative root, so

$$u = \frac{1}{2}y - \left(x - \frac{u^2}{4}\right)$$

No solution for $x < \frac{y^2}{4}$.