Question

A thin wire is stretched along the x -axis and is heated by an electric current. The temperature T of the wire varies with x and satisfies the differential equation:

$$
\frac{d^{2} T}{d x^{2}}-p^{2} T=-k
$$

where p and k are nonzero constants. Put $T=\frac{k}{p^{2}}+y$ and show that y satisfies the differential equation:

$$
\frac{d^{2} y}{d x^{2}}-p^{2} y=0
$$

Hence show that the general solution of the equation for T is:

$$
T=\frac{k}{p^{2}}+A e^{p x}+B e^{-p x}
$$

where A and B are constants. Find the values of A nad B given that Y satisfies the conditions $T=0$ at $x=a$ and also $T=0$ at $x=-a$ (where $a \neq 0$), and show that in this case

$$
T=\frac{k}{p^{2}}\left(1-\frac{\cosh p x}{\cosh p a}\right)
$$

Answer
$\frac{d^{2} T}{d x^{2}}-p^{2} T=-k$
If $\quad T=\frac{k}{p^{2}}+y$, then (since $\frac{k}{p^{2}}$ is a constant)
$\rightarrow \frac{d T}{d x}=\frac{d y}{d x}$ and $\frac{d^{2} T}{d x^{2}}=d^{y} d x^{2}$
Substituting into $\left(^{*}\right)$ gives $\quad \frac{d^{2} y}{d x^{2}}-p^{2}\left(\frac{k}{p^{2}}+y\right)=-k$
and so $\quad \frac{d^{2} y}{d x^{2}}-p^{2} y=0 \quad(* *)$
auxiliary equation for $\left({ }^{* *}\right) \quad \lambda^{2}-p^{2}=0$
which has two distinct real roots: $\quad \lambda_{1}, \lambda_{2}= \pm p$
General solution for ${ }^{(* *)}$: $\quad y=A e^{p x}+B e^{-p x}$
Hence the general solution for $\left({ }^{*}\right)$ is given by
$T=\frac{k}{p^{2}}+y=\frac{k}{p^{2}}+A e^{p x}+B e^{-p x}$
Boundary conditions:
$T(a)=0$ gives $=\frac{k}{p^{2}}+A e^{p a}+B e^{-p a}(1)$
$T(-a)=0$ gives $=\frac{k}{p^{2}}+A e^{-p a}+B e^{p a}(2)$
Equation (1) - Equation(2) $A\left(e^{p a}-e^{-p a))+B\left(e^{-p a}-e^{p a}\right.}=0\right.$
and so $A\left(e^{p a}-e^{-p a}\right)=B\left(e^{p a}-e^{-p a}\right)$
from which we deduce that $A=B$ (note $p a \neq 0$ by assumption, and so $\left.\left(e^{p a}-e^{-p a}\right) \neq 0\right)$

Therefore $T=\frac{k}{p^{2}}+y=\frac{k}{p^{2}}+A\left(e^{p x}+e^{-p x}\right)=\frac{k}{p^{2}}+2 A \cosh (p x)$
Boundary condition: $T(a)=0$ gives
$0=\frac{k}{p^{2}}+2 A \cosh (p a) \Rightarrow A=\frac{A}{2 p^{2} \cosh (p a)}$
Hence the particular solution:

$$
T=\frac{k}{p^{2}}\left(1-\frac{\cosh (p x)}{\cosh (p a)}\right)
$$

