## Question

Write down two explicit Möbius transformations taking the disc $D=\{z \in$ $\mathbf{C}||z-2|<1\}$ to the disc $E=\{z \in \mathbf{C} \mid \operatorname{Im}(z)<0\}$.

## Answer

Start by taking $\{|z-2|=1\}$ to $\overline{\mathbf{R}}$ :
take 3 points on $A=\{|z-2|=1\}$, such as $z_{1}=1, z_{2}=3, z_{3}=2+i$ and then take $m \in \mathrm{Möb}^{+}$satisfying $m\left(z_{1}\right)=0, m\left(z_{2}\right)=\infty, m\left(z_{3}\right)=1$ :

$$
m(z)=\frac{z-1}{z-3} \cdot \frac{2+i-3}{2+i-1}=\frac{z-1}{z-3} \cdot \frac{-1+i}{1+i}
$$

Since $m(A)=\overline{\mathbf{R}}$, either $m(D)=\mathbf{H}$ or $m(D)=E=\{\operatorname{Re}(\mathrm{z})<0\}$. Test by checking $m(2)$ since $2 \in D$ :

$$
\begin{aligned}
m(z) & =\frac{2-1}{2-3} \cdot \frac{-1+i}{1+i} \\
& =\frac{1-i}{1+i} \cdot \frac{1-i}{1-i} \\
& =\frac{-2 i}{2}=-i \in E
\end{aligned}
$$

and so $m(D)=E$ as desired.
A second one is $p(z)=m(z)+1$.

