Exam Question

Topic: Volume of Revolution

Find the volume of revolution obtained by rotating the region in the $x-y$ plane bounded by the lines $x=0, y=0, x=1$ and the curve $y=\mathrm{e}^{x}$ about (i) the line $y=-2$, (ii) the line $x=3$.

Give your answer in terms of e, and also as an approximation correct to 3 decimal places, using your calculator.

Solution

(i)

$$
\begin{aligned}
V & =\pi \int_{0}^{1}\left[\left(\mathrm{e}^{x}+2\right)^{2}-2^{2}\right] d x=\pi \int_{0}^{1}\left(\mathrm{e}^{2 x}+4 \mathrm{e}^{x}\right) d x \\
& =\pi\left[\frac{\mathrm{e}^{2 x}}{2}+4 \mathrm{e}^{x}\right]_{0}^{1}=\pi\left[\frac{\mathrm{e}^{2}}{2}+4 \mathrm{e}-\frac{1}{2}-4\right] \\
& =\pi\left[\frac{\mathrm{e}^{2}}{2}+4 \mathrm{e}-\frac{9}{2}\right]=31.628(3 \text { d.p. })
\end{aligned}
$$

(ii)

$$
\begin{aligned}
V & =2 \pi \int_{0}^{1}(3-x) \mathrm{e}^{x} d x=2 \pi\left[(3-x) \mathrm{e}^{x}\right]_{0}^{1}+2 \pi \int_{0}^{1} \mathrm{e}^{x} d x \\
& =2 \pi(2 \mathrm{e}-3)+2 \pi(\mathrm{e}-1)=2 \pi(3 \mathrm{e}-4)=26.106(3 \text { d.p. })
\end{aligned}
$$

