Exam Question

Topic: Volume of Revolution

Let R denote the region in the first quadrant of the x-y plane bounded by the x-axis, the y-axis, and the curve $y = 1 - x^2$.

- (i) Find the volume of the solid obtained by rotating R around the line x=3.
- (ii) Find the total surface area of the solid obtained by rotating R around the y-axis.

Solution

(i)
$$V = 2\pi \int_0^1 (3-x)(1-x^2) dx = 2\pi \int_0^1 (3-x-3x^2+x^3) dx$$

= $2\pi \left(3-\frac{1}{2}-1+\frac{1}{4}\right) = \frac{7\pi}{2}$

(ii)
$$S = 2\pi \int_0^1 x\sqrt{1+4x^2} dx + \pi$$

$$= 2\pi \left[\frac{1}{12} \left(1+4x^2\right)^{3/2}\right]_0^1 + \pi = \frac{\pi}{6} \left(5^{3/2} - 1\right) + \pi$$

$$= \frac{\pi}{6} \left(5^{3/2} + 5\right) = \frac{5\pi}{6} \left(\sqrt{5} + 1\right)$$