QUESTION

The stock holding cost for a product is $£ 45$ per item per annum, and the cost of placing an order for a replenishment is $£ 200$. Demand is steady and the annual demand is 2000 items. Shortages must not occur. The purchase cost depends on the number of items Q in the order: the cost per item is $£ c$, where

$$
c= \begin{cases}50-Q / 100 & \text { for } Q \leq 500 \\ 45 & \text { for } 500 \leq Q<1000 \\ 40 & \text { for } Q \geq 1000\end{cases}
$$

Determine the optimal order quantity.
ANSWER
The cost per annum is

$$
K\left(Q=\frac{s d}{Q}+\frac{1}{2} h Q+d c\right.
$$

First, find the optimal value of Q in the range $0 \leq Q \leq 500$.

$$
K(Q)=\frac{s d}{Q}+\frac{1}{2} h Q+d\left[50-\frac{Q}{100}\right]
$$

$\frac{d K(Q)}{d Q}=0$ gives $\frac{-s d}{Q^{2}}+\frac{1}{2} h-\frac{d}{100}=0$, and

$$
Q=\sqrt{\frac{2 s d}{h-\frac{d}{50}}}
$$

Substituting $s=200, d=2000, h=45$ we obtain

$$
Q=\sqrt{\frac{2.200 .2000}{45-40}}=400
$$

Thus, for $0 \leq Q \leq 500, k$ is minimized when $Q=400$, and

$$
K(400)=\frac{200 \cdot 2000}{400}+\frac{1}{2} \cdot 45 \cdot 400+2000(50-4)=102000
$$

The ECQ value is $Q+\sqrt{\frac{2 s d}{h}}=133.33$. This shows that for $500 \leq Q<1000$, and for $Q \geq 1000, K(Q)$ is minimized when $Q=500$; for $Q \geq 1000, K(Q)$ is minimized for $Q=1000$. We already know that $K(500>K(400)$, so it remains to evaluate $K(1000)$.

$$
K(1000)=\frac{200.2000}{1000}+\frac{1}{2} 45.1000+2000.40=102900
$$

Thus the optimal order quantity is $Q=400$.

