QUESTION

Prove that, for any prime p, \sqrt{p} is irrational.
ANSWER
Suppose \sqrt{p} is rational, say $\sqrt{p}=\frac{a}{b}$ where $a, b \in Z$, and $\frac{a}{b}$ is cancelled to it's lowest terms, so that $\operatorname{gcd}(a, b)=1$. We have $b \sqrt{p}=a$, so, on squaring, $b^{2} p=a^{2}$. Thus $p \mid a^{2}$, so by question $2, p^{2} \mid a^{2}$, say $a^{2}=p^{2} c$. Thus $b^{2} p=p^{2} c$, giving $b^{2}=p c$. Hence $p \mid b^{2}$, and so by question $2, p \mid b$. Thus $p \mid a$ and $p \mid b$, contrary to $\operatorname{gcd}(a, b)=1$. Thus \sqrt{p} is irrational, as claimed.

