QUESTION

(i) Prove that any prime $p>3$ is either of the form $6 k+1$ or of the form $6 k+5$ for some integer k.
(ii) Prove that the product of any two integers of the form $6 k+1$ is of that same form.
(iii) Adapt the proof of Theorem 2.7 to prove that there are infinitely many primes of the form $6 k+5$.

ANSWER

(i) By the division algorithm, any integer can be written in one of the forms $6 k, 6 k+1,6 k+2,6 k+3,6 k+4,6 k+5$. Of these, $6 k, 6 k+2$ and $6 k+4$ are even, and $6 k+3$ is divisible by 3 . Thus none of these can represent a prime >3. Thus p must be of the form $6 k+1$ or $6 k+5$.
(ii) $(6 k+1)(6 l+1)=36 k l+6 k+6 l+1=6(6 k l+k+l)+1$.

Thus the product of two integers of the form $6 n+1$ is again of the form $6 n+1$
(iii) Suppose there are only finitely many primes of the form $6 k+5$. Let them be $p_{1}, \ldots p_{n}$, and consider $N=6\left(p_{1} \ldots p_{n}\right)-1$
Now $N=6\left(\left(p_{i} \ldots p_{n}\right)-1\right)+5$, so N is of the form $6 k+5$. Thus neither 2 nor 3 divides N, so by (i) the prime divisors of N are either of the form $6 k+1$ or $6 k+5$. Suppose every prime dividing N is of the form $6 k+1$. Then, by repeated use of (ii), N would also be of that formbut we have seen that this is not the case.

Thus N has a prime divisor, p say, of form $6 k+5$. By assumption, p_{1}, \ldots, p_{n} are the only such primes, so $p=p_{i}$ for some i, and in particular $p \mid p_{1} \ldots p_{n}$. But $p \mid N$, so by theorem $1.3(4), p \mid 6\left(p_{1} \ldots p_{n}\right)-N$, i.e. $p \mid 1$ - but this contradicts p prime, as all primes are >1.

This contradiction shows our original assumption was wrong, so there are infinitely many primes of the form $6 k+5$.

