QUESTION

Are the following true or false? Provide either a proof, or a counterexample, as appropriate.

- (i) If $gcd(a, p^2) = p$, then $gcd(a^2, p^2) = p^2$.
- (ii) If $gcd(a, p^2) = p$ and $gcd(b, p^2) = p^2$, then $gcd(ab, p^4) = p^3$.
- (iii) If $gcd(a, p^2) = p$ and $gcd(b, p^2) = p$ then $gcd(ab, p^4) = p^2$.
- (iv) If $gcd(a, p^2) = p$ then $gcd(a + p, p^2) = p$.

ANSWER

- (i) TRUE: $gcd(a, p^2) = p \Rightarrow p^2 | a^2$, so $gcd(a^2, p^2) = p^2$.
- (ii) FALSE: $gcd(a, p^2) = p$ shows that p|a but p / a so we know the axact power of p that divides a. But $gcd(b, p^c) = p^2$ only shows that $p^2|b$. It is quite possible that b is divisible by a higher power of p (e.g. $gcd(p^3, p^2) = p^2$) and it is by exploring this possibility that we find a counterexample, e.g. a = 2, b = 8, p = 2 gives $gcd(a, p^2) = gcd(2, 4) = 2 = p$ and $gcd(b, p^2) = gcd(8, 4) = 4 = p^2$, but $gcd(ab, p^4) = gcd(16, 16) = 16 = p^4 \neq p^3$.
- (iii) TRUE: As explaind in part (ii), we have p|a, but $p^2 \not|a$, so a = pm, where $p \not|m$. Similarly, b = np, where $p \not|n$. We now have $ab = p^2mn$, and lemma 2.2 tells us that if p|mn then p|m or p|n. Since we know that p divided neither m or n, we may conclude that $p \not|mn$, so the highest power of p dividing ab is p^2 . As the only divisors of p^4 are powers of p, we may conclude that $\gcd(ab, p^4) = p^2$.
- (iv) FALSE: The trick here is to take $a=p^2-p$, so that a+p is divisible by p^2 . So to get a numerical counterexample, we may choose, e.g. p=3, a=6 and get $\gcd(a,p^2)=\gcd(6,9)=3=p$, but $\gcd(a+p,p^2)=\gcd(9,9)=9$.