QUESTION

Are the following true or false? Provide either a proof, or a counterexample, as appropriate.
(i) If $\operatorname{gcd}\left(a, p^{2}\right)=p$, then $\operatorname{gcd}\left(a^{2}, p^{2}\right)=p^{2}$.
(ii) If $\operatorname{gcd}\left(a, p^{2}\right)=p$ and $\operatorname{gcd}\left(b, p^{2}\right)=p^{2}$, then $\operatorname{gcd}\left(a b, p^{4}\right)=p^{3}$.
(iii) If $\operatorname{gcd}\left(a, p^{2}\right)=p$ and $\operatorname{gcd}\left(b, p^{2}\right)=p$ then $\operatorname{gcd}\left(a b, p^{4}\right)=p^{2}$.
(iv) If $\operatorname{gcd}\left(a, p^{2}\right)=p$ then $\operatorname{gcd}\left(a+p, p^{2}\right)=p$.

ANSWER
(i) TRUE: $\operatorname{gcd}\left(a, p^{2}\right)=p \Rightarrow p^{2} \mid a^{2}$, so $\operatorname{gcd}\left(a^{2}, p^{2}\right)=p^{2}$.
(ii) FALSE: $\operatorname{gcd}\left(a, p^{2}\right)=p$ shows that $p \mid a$ but $p \wedge a$ so we know the axact power of p that divides a. But $\operatorname{gcd}\left(b, p^{c}\right)=p^{2}$ only shows that $p^{2} \mid b$. It is quite possible that b is divisible by a higher power of p (e.g. $\operatorname{gcd}\left(p^{3}, p^{2}\right)=p^{2}$) and it is by exploring this possibility that we find a counterexample, e.g. $a=2, b=8, p=2$ gives $\operatorname{gcd}\left(a, p^{2}\right)=\operatorname{gcd}(2,4)=$ $2=p$ and $\left.\operatorname{gcd}\left(b, p^{2}\right)=\operatorname{gcd} 8,4\right)=4=p^{2}$, but $\operatorname{gcd}\left(a b, p^{4}\right)=\operatorname{gcd}(16,16)=$ $16=p^{4} \neq p^{3}$.
(iii) TRUE: As explaind in part (ii), we have $p \mid a$, but $p^{2} \backslash a$, so $a=p m$, where $p \nmid m$. Similarly, $b=n p$, where $p \nmid n$. We now have $a b=p^{2} m n$, and lemma 2.2 tells us that if $p \mid m n$ then $p \mid m$ or $p \mid n$. Since we know that p divided neither m or n, we may conclude that $p \nmid m n$, so the highest power of p dividing $a b$ is p^{2}. As the only divisors of p^{4} are powers of p, we may conclude that $\operatorname{gcd}\left(a b, p^{4}\right)=p^{2}$.
(iv) FALSE: The trick here is to take $a=p^{2}-p$, so that $a+p$ is divisible by p^{2}. So to get a numerical counterexample, we may choose, e.g. $p=3, a=6$ and get $\operatorname{gcd}\left(a, p^{2}\right)=\operatorname{gcd}(6,9)=3=p$, but $\operatorname{gcd}(a+$ $\left.p, p^{2}\right)=\operatorname{gcd}(9,9)=9$.

