Question

Consider a channel with a rectangular cross-section. If the depth of the water is $d(x, t)$. where x measures distance along the channel and t is time.
(a) Show that d satisfies

$$
\frac{\partial d}{\partial t}+\frac{\partial(v d)}{\partial x}=0
$$

where $v(x, t)$ is the speed of the water in the channel.
(b) Find the analogous equation if the water flows in a circular pipe of radius R.

Answer

(a) Consider an element of the channel of length $d x$.

Conservation of mass for this element gives
$\frac{d m}{d t}=-\int_{S+} \mathbf{j} \cdot \mathbf{n} d s+\int_{S-} \mathbf{j} \cdot \mathbf{n} d s$
$m=\rho A d x \Rightarrow \mathbf{j}=\rho v(x) \mathbf{i} ; \quad \mathbf{n}=\mathbf{i}$
Therefore $\rho d x \frac{\partial}{\partial t}(d \omega)=-\frac{\partial}{\partial x}(\rho v \omega d) d x$
So $\frac{\partial d}{\partial t}+\frac{\partial}{\partial x}(v d)=0$
(b) Cross section:

PICTURE

$$
\text { Area } \begin{aligned}
A & =R^{2} \theta-(R-d) R \sin \theta \\
& =R^{2} \cos ^{-1} \frac{R-d}{R}-R(R-d) \sqrt{1-\left(\frac{R-d}{R}\right)}
\end{aligned}
$$

The same procedure as above gives: $\frac{\partial}{\partial t} A(d)+\frac{\partial}{\partial x}(V A(d))=0$ (Substitution for A gives a messy equation)

