Question

A rubber ball is dropped from rest onto a tile floor a distance h_{1} away. The ball bounces up to a height h_{2}. What is the coefficient of restitution?

Answer

The ball falls under gravity:

By Newton's 2nd law:

$$
\begin{aligned}
m \ddot{y} & =-m g \\
m v \frac{d v}{d y} & =-m g \quad(v=\dot{y}) \\
\frac{1}{2} v^{2} & =-g y+g h_{1}
\end{aligned}
$$

Hence on impact with the floor $v=v_{0}=\sqrt{2 g h_{1}}$
Also if the ball has speed v_{1} (upwards) just after impact, $v_{1}=\sqrt{2 g h_{2}}$
Now by differentiation $v_{1}=e v_{0} \Rightarrow e=\frac{v_{1}}{v_{0}}=\sqrt{\frac{h_{2}}{h_{1}}}$

