Question

A simple pendulum has angular position θ and angular momentum p. The motion of the pendulum (assuming a suitable set of measurement units so there are no constants in the equation) can then be described by the following ordinary differential equation for $p(\theta)$

$$
\frac{d p}{d \theta}=-\frac{\sin \theta}{p}
$$

Sketch the direction field (note the periodicity and show values of $-2 \pi \leq$ $\theta \leq 2 \pi$). Comment on the different behaviour between a solution that has a very small value of p when $\theta=0$ and a solution that has very large p when $\theta=0$.

Answer

Isoclines are $c=-\frac{\sin \theta}{P}$.

$$
\Rightarrow-c P=\sin \theta
$$

$$
\begin{array}{cc}
c=0 & \theta=n \pi \\
& n=0,1,2 \cdots \\
c=1 & P=-\sin \theta \\
c=2 & P=\sin \theta \\
c \rightarrow \infty & P=0
\end{array}
$$

If P is small when $\theta=0$ then the solution $P(\theta)$ only exists for values of θ, $-\pi<-\theta_{0} \leq \theta \leq \theta_{0}<\pi$. e.g.

(A pendulum oscillating back and forth)
If P is large when $\theta=0$ then the solution $P(\theta)$ exists for all θ. e.g.

(A pendulum swinging over and over).

