Question

A simple pendulum has angular position θ and angular momentum p. The motion of the pendulum (assuming a suitable set of measurement units so there are no constants in the equation) can then be described by the following ordinary differential equation for $p(\theta)$

$$\frac{dp}{d\theta} = -\frac{\sin\theta}{p}$$

Sketch the direction field (note the periodicity and show values of $-2\pi \leq \theta \leq 2\pi$). Comment on the different behaviour between a solution that has a very small value of p when $\theta = 0$ and a solution that has very large p when $\theta = 0$. (*)

If P is small when $\theta = 0$ then the solution $P(\theta)$ only exists for values of θ , $-\pi < -\theta_0 \le \theta \le \theta_0 < \pi$. e.g.

 $-\pi$

π

(A pendulum oscillating back and forth) If P is large when $\theta = 0$ then the solution $P(\theta)$ exists for all θ . e.g.

(A pendulum swinging over and over).